1,605 research outputs found
Asymptotics and local constancy of characters of p-adic groups
In this paper we study quantitative aspects of trace characters
of reductive -adic groups when the representation varies. Our approach
is based on the local constancy of characters and we survey some other related
results. We formulate a conjecture on the behavior of relative to
the formal degree of , which we are able to prove in the case where
is a tame supercuspidal. The proof builds on J.-K.~Yu's construction and the
structure of Moy-Prasad subgroups.Comment: Proceedings of Simons symposium on the trace formul
Coherent Tunneling of Atoms from Bose-condensed Gases at Finite Temperatures
Tunneling of atoms between two trapped Bose-condensed gases at finite
temperatures is explored using a many-body linear response tunneling formalism
similar to that used in superconductors. To lowest order, the tunneling
currents can be expressed quite generally in terms of the single-particle
Green's functions of the isolated Bose gases. A coherent first-order tunneling
Josephson current between two atomic Bose-condensates is found, in addition to
coherent and dissipative contributions from second-order
condensate-noncondensate and noncondensate-noncondensate tunneling. Our work is
a generalization of Meier and Zwerger, who recently treated tunneling between
uniform atomic Bose gases. We apply our formalism to the analysis of an
out-coupling experiment induced by light wave fields, using a simple
Bogoliubov-Popov quasiparticle approximation for the trapped Bose gas. For
tunneling into the vacuum, we recover the results of Japha, Choi, Burnett and
Band, who recently pointed out the usefulness of studying the spectrum of
out-coupled atoms. In particular, we show that the small tunneling current of
noncondensate atoms from a trapped Bose gas has a broad spectrum of energies,
with a characteristic structure associated with the Bogoliubov quasiparticle
u^2 and v^2 amplitudes.Comment: 26 pages, 5 figures, minor changes, to appear in PR
Measurement of one-particle correlations and momentum distributions for trapped 1D gases
van Hove's theory of scattering of probe particles by a macroscopic target is
generalized so as to relate the differential cross section for atomic ejection
via stimulated Raman transitions to one-particle momentum-time correlations and
momentum distributions of 1D trapped gases. This method is well suited to
probing the longitudinal momentum distributions of 1D gases in situ, and
examples are given for bosonic and fermionic atoms.Comment: 4 pages, 2 .eps figure
Resonance fluorescence in a band gap material: Direct numerical simulation of non-Markovian evolution
A numerical method of calculating the non-Markovian evolution of a driven
atom radiating into a structured continuum is developed. The formal solution
for the atomic reduced density matrix is written as a Markovian algorithm by
introducing a set of additional, virtual density matrices which follow, to the
level of approximation of the algorithm, all the possible trajectories of the
photons in the electromagnetic field. The technique is perturbative in the
sense that more virtual density matrices are required as the product of the
effective memory time and the effective coupling strength become larger. The
number of density matrices required is given by where is the number
of timesteps per memory time. The technique is applied to the problem of a
driven two-level atom radiating close to a photonic band gap and the
steady-state correlation function of the atom is calculated.Comment: 14 pages, 9 figure
Rupture of multiple parallel molecular bonds under dynamic loading
Biological adhesion often involves several pairs of specific receptor-ligand
molecules. Using rate equations, we study theoretically the rupture of such
multiple parallel bonds under dynamic loading assisted by thermal activation.
For a simple generic type of cooperativity, both the rupture time and force
exhibit several different scaling regimes. The dependence of the rupture force
on the number of bonds is predicted to be either linear, like a square root or
logarithmic.Comment: 8 pages, 2 figure
On the elliptic nonabelian Fourier transform for unipotent representations of p-adic groups
In this paper, we consider the relation between two nonabelian Fourier
transforms. The first one is defined in terms of the Langlands-Kazhdan-Lusztig
parameters for unipotent elliptic representations of a split p-adic group and
the second is defined in terms of the pseudocoefficients of these
representations and Lusztig's nonabelian Fourier transform for characters of
finite groups of Lie type. We exemplify this relation in the case of the p-adic
group of type G_2.Comment: 17 pages; v2: several minor corrections, references added; v3:
corrections in the table with unipotent discrete series of G
Atom laser coherence and its control via feedback
We present a quantum-mechanical treatment of the coherence properties of a
single-mode atom laser. Specifically, we focus on the quantum phase noise of
the atomic field as expressed by the first-order coherence function, for which
we derive analytical expressions in various regimes. The decay of this function
is characterized by the coherence time, or its reciprocal, the linewidth. A
crucial contributor to the linewidth is the collisional interaction of the
atoms. We find four distinct regimes for the linewidth with increasing
interaction strength. These range from the standard laser linewidth, through
quadratic and linear regimes, to another constant regime due to quantum
revivals of the coherence function. The laser output is only coherent (Bose
degenerate) up to the linear regime. However, we show that application of a
quantum nondemolition measurement and feedback scheme will increase, by many
orders of magnitude, the range of interaction strengths for which it remains
coherent.Comment: 15 pages, 6 figures, revtex
Generic model of an atom laser
We present a generic model of an atom laser by including a pump and loss term
in the Gross-Pitaevskii equation. We show that there exists a threshold for the
pump above which the mean matter field assumes a non-vanishing value in
steady-state. We study the transient regime of this atom laser and find
oscillations around the stationary solution even in the presence of a loss
term. These oscillations are damped away when we introduce a position dependent
loss term. For this case we present a modified Thomas-Fermi solution that takes
into account the pump and loss. Our generic model of an atom laser is analogous
to the semi-classical theory of the laser.Comment: 15 pages, including 5 figures, submitted to Phys. Rev. A, revised
manuscript, file also available at
http://www.physik.uni-ulm.de/quan/users/kne
Neuroimaging Evidence of Major Morpho-Anatomical and Functional Abnormalities in the BTBR T+TF/J Mouse Model of Autism
BTBR T+tf/J (BTBR) mice display prominent behavioural deficits analogous to the defining symptoms of autism, a feature that has prompted a widespread use of the model in preclinical autism research. Because neuro-behavioural traits are described with respect to reference populations, multiple investigators have examined and described the behaviour of BTBR mice against that exhibited by C57BL/6J (B6), a mouse line characterised by high sociability and low self-grooming. In an attempt to probe the translational relevance of this comparison for autism research, we used Magnetic Resonance Imaging (MRI) to map in both strain multiple morpho-anatomical and functional neuroimaging readouts that have been extensively used in patient populations. Diffusion tensor tractography confirmed previous reports of callosal agenesis and lack of hippocampal commissure in BTBR mice, and revealed a concomitant rostro-caudal reorganisation of major cortical white matter bundles. Intact inter-hemispheric tracts were found in the anterior commissure, ventro-medial thalamus, and in a strain-specific white matter formation located above the third ventricle. BTBR also exhibited decreased fronto-cortical, occipital and thalamic gray matter volume and widespread reductions in cortical thickness with respect to control B6 mice. Foci of increased gray matter volume and thickness were observed in the medial prefrontal and insular cortex. Mapping of resting-state brain activity using cerebral blood volume weighted fMRI revealed reduced cortico-thalamic function together with foci of increased activity in the hypothalamus and dorsal hippocampus of BTBR mice. Collectively, our results show pronounced functional and structural abnormalities in the brain of BTBR mice with respect to control B6 mice. The large and widespread white and gray matter abnormalities observed do not appear to be representative of the neuroanatomical alterations typically observed in autistic patients. The presence of reduced fronto-cortical metabolism is of potential translational relevance, as this feature recapitulates previously-reported clinical observations
Quantum dynamical theory for squeezing the output of a Bose-Einstein condensate
A linear quantum dynamical theory for squeezing the output of the trapped
Bose-Einstein condensate is presented with the Bogoliubov approximation. We
observe that the non-classical properties, such as sub-Poisson distribution and
quadrature squeezing effect, mutually oscillate between the quantum states of
the applied optical field and the resulting atom laser beam with time. In
particular, it is shown that an initially squeezed optical field will lead to
squeezing in the outcoupled atomic beam at later times.Comment: 6 pages, Latex file, Phys.Rev.A 63(2001)1560
- …
