292,801 research outputs found

    Reliability bounds for fault-tolerant systems with competing responses to component failures

    Get PDF
    Bounds are established on the probability of system failure for fault-tolerant systems of the type used, for example, in aviation control. Event series leading to system failure are assumed to follow a semi-Markov model in which the potential sojourn times associated with component failures have exponential distributions and those associated with system responses have distributions with unspecified form. A product form of the bounds is derived by using a model that provides for multiple competing system responses to component failures

    Shuttle system ascent aerodynamic and plume heating

    Get PDF
    The shuttle program provided a challenge to the aerothermodynamicist due to the complexity of the flow field around the vehicle during ascent, since the configuration causes multiple shock interactions between the elements. Wind tunnel tests provided data for the prediction of the ascent design heating environment which involves both plume and aerodynamic heating phenomena. The approach for the heating methodology based on ground test firings and the use of the wind tunnel data to formulate the math models is discussed

    Grid generation strategies for turbomachinery configurations

    Get PDF
    Turbomachinery flow fields involve unique grid generation issues due to their geometrical and physical characteristics. Several strategic approaches are discussed to generate quality grids. The grid quality is further enhanced through blending and adapting. Grid blending smooths the grids locally through averaging and diffusion operators. Grid adaptation redistributes the grid points based on a grid quality assessment. These methods are demonstrated with several examples

    Geologic information from satellite images

    Get PDF
    The author has identified the following significant results. Extracting geologic information from ERTS and Skylab/EREP images is best done by a geologist trained in photointerpretation. The information is at a regional scale, and three basic types are available: rock and soil, geologic structures, and landforms. Discrimination between alluvium and sedimentary or crystalline bedrock, and between units in thick sedimentary sequences is best, primarily because of topographic expression and vegetation differences. Discrimination between crystalline rock types is poor. Folds and fractures are the best displayed geologic features. They are recognizable by topographic expression, drainage patterns, and rock or vegetation tonal patterns. Landforms are easily discriminated by their familar shapes and patterns. It is possible to optimize the scale, format, spectral bands, conditions of acquisition, and sensor systems for best geologic interpretation. Several examples demonstrate the applicability of satellite images to tectonic analysis and petroleum and mineral exploration

    Noncontact temperature pattern measuring device

    Get PDF
    This invention relates to a noncontact imagine pyrometer system for obtaining the true temperature image of a given substance in a contactless fashion without making assumptions about localized emissivity of the substance or the uniformity of the temperature distribution. Such a contactless temperature imaging system has particular application in the study and production of many materials where the physical contact required to make a conventional temperature measurement drastically effects or contaminates the physical process being observed. Two examples where accurate temperature profiles are of critical interest are: (1) the solid-liquid phase change interface in the production of electronic materials and (2) metastable materials in the undercooling region. The apparent novelty resides in the recognition that an active pyrometer system may be advantageously adapted to perform contactless temperature imaging so that an accurate temperature profile can be obtained

    External losses in photoemission from strongly correlated quasi two-dimensional solids

    Full text link
    New expressions are derived for photoemission, which allow experimental electron energy loss data to be used for estimating losses in photoemission. The derivation builds on new results for dielectric response and mean free paths of strongly correlated systems of two dimensional layers. Numerical evaluations are made for Bi2Sr2CaCu2O8Bi_{2}Sr_{2}CaCu_{2}O_{8} (Bi2212) by using a parametrized loss function. The mean free path for Bi2212 is calculated and found to be substantially larger than obtained by Norman et al in a recent paper. The photocurrent is expressed as the convolution of the intrinsic approximation for the current from a specific 2D layer with an effective loss function. The observed current is the sum of such currents from the first few layers. The photo electron from a specific CuOCuO layer is found to excite low energy acoustic plasmon modes due to the coupling between the CuOCuO layers. These modes give rise to an asymmetric power law broadening of the photo current an isolated two dimensional layer would have given. We define an asymmetry index where a contribution from a Luttinger lineshape is additive to the contribution from our broadening function. Already the loss effect considered here gives broadening comparable to what is observed experimentally. A superconductor with a gapped loss function is predicted to have a peak-dip-hump lineshape similar to what has been observed, and with the same qualitative behavior as predicted in the recent work by Campuzano et al.Comment: 17 pages, 10 figure

    Chronic pain assessments in children and adolescents : a systematic literature review of the selection, administration, interpretation, and reporting of unidimensional pain intensity scales

    Get PDF
    Background. Advances in pain assessment approaches now indicate which measures should be used to capture chronic pain experiences in children and adolescents. However, there is little guidance on how these tools should best be administered and reported, such as which time frames to use or how pain scores are categorised as mild, moderate, or severe. Objective. To synthesise current evidence on unidimensional, single-item pain intensity scale selection, administration, interpretation, and reporting. Methods. Databases were searched (inception: 18 January 2016) for studies in which unidimensional pain intensity assessments were used with children and adolescents with chronic pain. Ten quality criteria were developed by modifying existing recommendations to evaluate the quality of administration of pain scales most commonly used with children. Results. Forty-six studies met the inclusion criteria. The highest score achieved was 7 out of a possible 10 (median: 5; IQR: 4–6). Usage of scales varied markedly in administrator/completer, highest anchors, number of successive assessments, and time referent periods used. Conclusions. Findings suggest these scales are selected, administered, and interpreted inconsistently, even in studies of the same type. Furthermore, methods of administration are rarely reported or justified making it impossible to compare findings across studies. This article concludes by recommending criteria for the future reporting of paediatric chronic pain assessments in studies

    Quantum coherence in a ferromagnetic metal: time-dependent conductance fluctuations

    Full text link
    Quantum coherence of electrons in ferromagnetic metals is difficult to assess experimentally. We report the first measurements of time-dependent universal conductance fluctuations in ferromagnetic metal (Ni0.8_{0.8}Fe0.2_{0.2}) nanostructures as a function of temperature and magnetic field strength and orientation. We find that the cooperon contribution to this quantum correction is suppressed, and that domain wall motion can be a source of coherence-enhanced conductance fluctuations. The fluctuations are more strongly temperature dependent than those in normal metals, hinting that an unusual dephasing mechanism may be at work.Comment: 5 pages, 4 figure
    corecore