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SUMMARY

This paper establishes bounds on the probability of system failure for fault-
tolerant systems of the type used, for example, in aviation control. Event series
leading to system failure are assumed to follow a semi-Markov model in which the
potential sojourn times associated with component failures have exponential distri-
butions and those associated with system responses have distributions with unspeci-
fied form. A product form of the bounds is derived by using a model that provides
for multiple competing system responses to component failures. The general form of
the bounds is expressed in terms of integral factors that depend on component fail-
ure rates and the distributions of system response times. The bounds are also
expressed in terms of percentiles, conditional mean response times, and certain
transition probabilities. The accuracy of the bounds is discussed both analytically
and in terms of an example system.

1. INTRODUCTION

In recent years, the desire to improve performance, reliability, and safety of
commercial and military aircraft systems has led to the increased use of fault-
tolerant hardware and software control systems. Some control systems now employ
tests to detect and identify failed components and, if failures are identified, the
system may reconfigure to exclude information provided by failed components. The
techniques for doing this (Montgomery, 1975; Smith et al., 1977; and Willsky, 1976)
are often based on hardware duplication of like components with comparison monitor-
ing for failure detection, voting or averaging to mask errors from failed compo-
nents, and regrouping and repeated comparison for failure identification; also,
reconfiquration may take the form of switchovers to spare components or switchovers
to operational components.

Early recognition that combinatorial assessment methods would not readily
account for the effect on system reliability of such state-dependent system
responses has led to the use of multistate point process models. Several automated
semi-Markov and nonhomogeneous Markov models and the associated solution techniques,
which have been proposed over the last several years, are surveyed and discussed by
Geist and Trivedi, 1983, in terms of design limitations imposed by model assump-
tions, efficiency and accuracy of the solution techniques employed, and the useful-
ness of the types of solutions obtained.

Although some authors suggest direct computational methods (Ng and Avizienis,
1976), or approximate methods based on state aggregation techniques in detailed
fault-handling models (Sstiffler et al., 1979), White, 1984, suggests upper and lower
bounds for system unreliability. The framework from which he derives the bounds is
a semi-Markov model in which component failure times have exponential distributions
and system response times have distributions with unspecified form. His bounds take
a product form, with one set of factors depending on information concerning com-
ponent failure rates and another set depending, in addition, on the means and vari-
ances of the response times.

In this paper the bounds given by White, 1984, are generalized to a model that
provides for competing system responses to component failures. The model describes



a system's history, which consists of a series of states entered over a period of
time together with the time intervals between state changes. Entrance into a state
may correspond to the occurrence of a component failure or to the occurrence of a
system response to previously failed components. Competing responses are often of
types such as detecting and deactivating previously failed components or activating
spare components, The assumed model is semi-Markov, in which the potential
(possible) sojourn times associated with component failures have exponential distri-
butions and those associated with system responses have distributions with unspeci-
fied form.

Information concerning system response times may be available from experimental
fault injection studies (Lala and Smith, 1983) or from analytical derivations of the
response time distributions, as determined from specifications of sequential statis-
tical tests that are often employed in system design (wWalker, 1980).

In section 3 a product form of the bounds is derived which has integral factors
that depend on component failure rates and the distributions of system response
times. This form permits substituting sample cumulative distributions and elimi-
nates the need for certain intermediate stages of data analysis, such as checking
the adequacy of assumed parametric forms. The simpler form given in section 4 may
be useful when minimal information is available in the form of conditional mean
response times, percentiles, and certain transition probabilities. To reduce fur-
ther the information needed, certain nonparametric classes of response time distri-
butions may be employed, as discussed in section 5.

2. THE MODEL

In the context of a particular application, a system state is a vector having
elements that specify the number of operational components, the status of system
response, and the current system configquration. It is convenient to label the
system states simply as {1, 2, ..., k}. A certain subset R corresponds to states
entered as a result of system responses to component failures, and the remaining
set R corresponds to states entered when components fail. As illustrated in
section 6, it is possible for some element of R to correspond to an absorbing
state (system failure).

A system's history consists of a series of states Zgr Zqs sesr Zp entered
over a period of time together with the sojourn times (time intervals between state
changes) Uy, Uy, eee, Up. Typically, the initial state zq is a fully operational
system state and z, is entered when some component fails. The system may enter
Z, as a result of another component failure or as a result of system response to
the first failure, and so on, giving a series of states in R and R. Successive
responses may result from failure detection and subsequent deactivation of a failed
component. Competing responses arise, for example when two components, say A and B,
have failed and the potential responses are of types such as deactivate A versus
deactivate B or activate the spare A versus deactivate the failed active unit B.

If the process is semi-Markov, then the random variables Z5, Zq, ..., %,
follow a Markov chain and the sojourn times Uy, U2, ceey Un are conditionally
independent, given a particular series of state changes. The usual model specifica-
tion (Lagakos et al., 1978) is given by the initial and transition probabilities and
by the conditional distributions of the sojourn times as follows:




(i) = p(z, = 1) 6(i,j) =Rz = jlz_ = i)

olx;i,j) = p(u_ . £ xlz_ =1,z = 5)

Suppose that the system enters state Zno1 = i at the m-1st epoch. Let
T(i,2) (2=1, 2, ..., k) denote the potential (possible) sojourn times associated
with the states g =1, 2, ..., k. Then, the system enters state j only if
T(i,j) 1is the smallest of the potential sojourn times. The time between the m-1st
and mth epochs is Uy = min{T(i,1), T(i,2), ..., T(i,k)}. 1In particular, 6(i,3j)
0(x;i,j) gives the probability that Un £x and T(i,j) min{T(i,2)}, where
£ # 3, es+s, given that the current system state is =z i.

m-1

If the potential sojourn times are independent and have continuous distribu-
tions, then

0(i,j) Ao(x;i,j) = 1 G(x;i,q) dc(x;i,5) (1)

2#]

where G(x;i, %) = P{T(i, %) > x} represents the survivor functions. As mentioned
earlier, the potential sojourn times T(i, %), 2 € R associated with component fail-
ures have exponential distributions in which the parameters A(i, %) depend on the
adjoining states i and ¢ and the response times T(i,R), £ € R have distribu-
tions G(x;i, %), 2 € R with unspecified form.

One question that arises is whether any generality is added by permitting
dependent response times. Results given by Miller, 1977, and Tsiatis, 1975, show
that if 0Q(x;i,j) 1is continuous, then independent random variables {T(i,%)} exist
having distributions that satisfy equation (1). In particular, when O(x;i,j) is
continuous, the distributions of response times that satisfy equation (1) have
survivor functions given by Tsiatis, 1975, as follows:

X
expg-f h(y;i,§) dy
0

G(x;i,3)

where

hiy;i,3)

e(irj) dQ(y;i'j)/ZZGR e(ivz){1 - Q(Y;i,l)}
Thus, it suffices to consider only the representation given by equation (1).

3. GENERAL FORM OF THE BOUNDS

As the model now stands, we have not included an expected large difference in
the component failure and system response times. Fault-tolerant systems often
employ highly reliable components and are designed for quick response to component
failures; hence, the response times may often be stochastically much smaller than



failure times. This assumption is the basis for the computational techniques
proposed by Stiffler et al.,, 1979, and it is also the basis for the accuracy but not
for the validity of the bounds given in the following discussion.

Our derivation, similar to that given by White, 1984, consists, in parts of
partitioning a particular event series z,, z,, ..., z, according to the character
of the potential sojourn times attached to zg,, 2y, eees Zpqe If i #3j and if

all potential sojourn times attached to z;_ 4 correspond to component failures,

while those attached to zj_1 include one or more system response times, then U
is stochastically smaller than Us providing, of course, that the potential
response times are stochastically smaller than the potential failure times. The
upper bound is obtained by excluding the stochastically smaller random variables
from the hitting time, T = Uy + Uy + «ee + U, of Zni thus, T is approximated by
a sum of fewer variables. The lower bound is obtained in a similar way except that
certain constants, chosen to represent upper percentiles of the response time dis-
tributions, replace the previously excluded variables; this gives a new random
variable that, effectively, is stochastically larger than T.

3

Let z5, 24, ..., 2, represent a particular path leading to an absorbing

state z,. Let A, B, and C partition the indices of zy, 24, ..., 2, in the

following way: i € A if all potential sojourn times leading from =z;_, represent
elapsed times to component failures; i € B if the particular potential sojourn

time leading from 231 to z; represents a response time; and i e C provided

that i ¢ A and the particular potential sojourn time leading from =z;_; to 2z;
represents an elapsed time to some component failure.

The probability p(t) of hitting =z by time t and entering the series of

n
states Zgr Zqr ese, Z, 1S

p(t) =P(T £ t, Zg = 25, ees, 2, = 2

n n)

where T = Uy + eee + U, is the hitting time of =z This probability is given by

n.
n
= ; 2
P(t) fs 8lzg) T,_, 8(z, ., 2) do(u sz, _,,z,) (2)
where
S = {(u-" u2, seaoey un): 111 +u2+ ...+un§t}
Let A = ZAi denote the sum of an arbitrarily chosen set of nonnegative con-

stants A, i € BUC. Upper and lower bounds pjy(t) and py(t), respectively, for
p(t) follow by observing, as in White, 1984, that the sets

A

Sy = {(u1, ey upd: Ipuy

S




and
SL = {(u1, cs sy un)= EAU i e BUC}

i C
satisfy s & s C s,

Now, replacing S by Sy and Sy, in equation (2) gives, respectively,

Py(t) = 6(zy) H(t) I, a, Ty by, T, ¢ (3)
and

PL(£) = 6(zp) H(t - ) T a, M b 1 o4 (4)
where, in terms of Ay = zleﬁ Ali, ),

a3 = Mzi_q,24)/24 (5)

o
_ Ay Alve .
by —f e i II“Z. G(y,zi_1,£) dG(y,zi_1,zi) (6)
0 i
o0
ey = e™Y Az, ,z.) T Glyiz. ., 0 dy (7)
1 o i-17710 T TR
ol = [ aNy g ) da( ) (8)
i = e i H£¢z. G(y,zi_1,2 Glysz, /2,
0 i
c: = Sy Az ) T. Gly;z 2) d (9)
i = 0 e 1 i—1’zi 2 y: i—1’ Y
The function
H(x) = P(5U; £ x) (10)

appearing in equations (3) and (4) represents the distribution function for a sum of
independent random variables having exponential distributions with rate parameters



Ai’ i € A. The indices for each product shown in equations (6) to (9) vary only
over the indices of the response time distributions.

ir i b;, and C; are directly estimable whenever the
response times are observed experimentally. The choice of estimates would vary
depending on whether the response times are observed individually or observed as
competing events. In the former case, substitution of censored data forms of the
sample cumulative distributions would give nonparametric estimates. In the latter
case, nonparametric estimates as described by XKalbfleisch and Prentice, 1980, would
be applicable. The A; would probably be chosen as points of censoring, hopefully

i
at the extreme upper tails of the response time distributions.

The quantities b c

4. BOUNDS EXPRESSED IN TERMS OF TRANSITION PROBABILITIES,
CONDITIONAL MEANS, AND PERCENTILES

One application of the bounds given earlier assumes that component failure
rates are known quantities and that certain minimal information is available con-
cerning the distributions of response times. In White, 1984, the model is limited
to the case in which a single response time is competing with component failures and
the bounds are given in terms of means and variances. For the general case, it is
unlikely that accurate bounds can be expressed solely in terms of means and vari-
ances, The upper bounds given in this section require only information concerning
certain transition probabilities and percentiles. The lower bounds require addi-
tional information concerning the conditional mean minimum response times.

Consider first the upper bound given by equation (3). Since typically the rate
parameters A(i,j) take quite small values, a fairly accurate upper bound is given

by replacing b; and c¢; appearing in equation (3) by

b .= G HYAR 2 r 4,
1i J; H2¢zi G(y 21_1.2) aG(y Z; 1 zl) (11)

Cii = X(Zi_1pzi) Gi(Ai) ui(Ai) + A X(Zi_1,Zi) éi(Ai) (12)

+ Mzy_q,zg) Gy () A7

where

G, (8) = M, Gla5z, . 0) (13)
G, (a) =1 -G (A) (14)

(8) = 6. (a) ]’ & 4G, ( (15)
w80 = G, (4 . i (X3




Note that each b,; represents a transition probability and is computed as if all
component failure modes were eliminated at state z;_,. The b1i takes a value
equal to 1 whenever a single response time is competing with failure times. The
quantity ui(Ai) represents the conditional mean minimum response time given that
the smallest response occurs in (0,A;). Since G;(A{) py(A;) £ Gy(4;) Ay, the

upper bound can be computed without knowledge of ui(Ai). In this case the informa-

tion needed to compute the upper bound consists of the transition probabilities and
the probability that the smallest response time exceeds Ai.

Next, a new lower bound is given by replacing each of bi and c{, appearing

in equation (4) by the quantities

bli

exp(-2;A;) {by; - G, (4,)} (16)

and

c%i = x(zi_1,zi) exp(—AiAi) {Gi(Ai) “i(Ai) + Ai Gi(Ai)} (17)

An optimal choice of the 4 to minimize P,(t) - PL(t) would probably
require some knowledge of the form of the distributions of response times. The sim-

R G -l < 2p% .6
ple results, by; - bij & Aj8; + G, (A) and cq; - cqi 2 A A] + G, (A/), show that

by - b1i and Cqi - c1i each converge to 0 as A; and ai(Ai) decrease to O.
Also, with r representing the number of terms in IaU5 it is not difficult to
show that H(t) - H(t - A) is dominated by {tr - (t - K)r} HAAi.

This analysis suggests that if the system components are highly reliable and if
the system is designed for quick response to component failures, then tight bounds
would often be given by choosing Ai equal to large percentiles of the distribu-
tions of minimum response times., Exact methods for computing H{x) are available
in several introductory-level texts that discuss time homogeneous Markov processes.

5. BOUNDS EXPRESSED IN TERMS OF PERCENTILES AND CONDITIONAI. MEANS

The bounds given in this section rely on weak assumptions relating the response
time distributions. The aim is to reduce the information needed to compute the
bounds. This is done by replacing b,; appearing in equations (11) and (16) by
other quantities, depending on the percentiles of the response time distributions.

Let F(*) represent a continuous baseline distribution and let <C; denote the
class of continuous distributions generated by F(*) in the following way: G(*)
belongs to c, |if G(x) = {F(x)}a from some value of a > 0 and all values of
X 2 0. The class C; 1is often described as the class of distributions having
proportional hazard rates. The class is nonparametric in the sense that it involves
an unspecified form of a baseline distribution. It has been studied extensively

(Kalbfleisch and Prentice, 1980) as a framework for developing nonparametric statis-
tical methods.



In the present context,
C, for some unspecified baseline distribution,
the representation

_ - (25 _qr2)
G(X;Zi_‘]rl) = {Gi(x)}
where

0 < ¢lzy_4,8) <1

22 ¢(zl_1,2) =1

suppose that the response time distributions belong to
Then,

each survivor function has

(18)

The survivor function for the minimum response time is given by

T G(x;z,

i L 1—1’1)

Upon replacing by

appearing in equations (11)

byj = #(25_9,25)

[log G(Ai;zi_1,zi)]/[22

log G(Ai;zi_1,2)]

(19)

and (16) by

(20)

we get upper bounds that require only information concerning the probabilities that

the response times exceed
mean minimum response time,

Ai’

Now consider a second class C2, generated from
bution F(*) 1in the following way: G(°) belongs to
some value of a > 0 and all values of x 2 0. This

the same sense as before; however,
for nonparametric inference.

it appears to have

If the response time distributions belong to C,
baseline distribution,
Yz, ., 4)
i-1
G(xiz;_4,8) = {H;(x)}

The lower bounds still depend on the conditional

a continuous baseline distri-
Co if G(x) = F¥x) for
class is also nonparametric in
been studied less as a basis

for some unspecified

then each has the representation

(21)




where

0 < w(zi_1,l) <1

(22)
=1
ZR, w(zi_1 ’ »Q)
The distribution function for the largest of the response times is given by
Hi(x) = Hl G(x;zi_1,l)
Substituting from equation (21) gives
1 Yz, .,1) Wz, .,z.)-1
1-1 i-1" 71
. = - da
by J: “2¢Zi ;1 u } w(zi_1,zi) u u (23)

Upon expanding the product in the inteqrand, b,;; can be written as a sum of terms
involving only the quantities $(z;_4,2). Also, from equation (21) each w(zi_1,£)
can be represented in the form

W(z;_1,8) = [log G(4 5z, ., 0] /[, log G(A 52, .. )] (24)

2

Therefore, b,; as given by equations (23) and (24) depends only on the percentiles
of the response time distributions and can be substituted in equations (11) and (16)
to give a new set of bounds.

6. AN FXAMPLE

The example to be discussed is concerned with the effect on system reliability
of a particular choice of interval for cycling a spare and serves to illustrate the
application of the bounds given in section 4.

Consider a system having three active processor units and one spare. Active
units have a failure rate A and the spare has a failure rate yp. The output of
the active units is subject to majority vote; thus, the system survives with one
failed active unit. The spare and one predesignated active unit form a cooperating
pair. To check its operational status, the spare is automatically activated and
switched with the cooperating unit at regular intervals. The spare is also
activated whenever a failed unit is detected and, in this case, it replaces the
failed unit.

The desire to check the operational status of the spare leaves open the possi-
bility of cycling in a failed spare at some instant when a noncooperating unit has
failed. As shown in figure 1, one of the noncooperating active units fails
(state 1), the spare fails (state 2), and the system, being unaware that either unit



has failed, automatically switches the spare with the good active unit (state 3).
State 3, as well as states 5 and 7, represents system failure since the system is
not fault tolerant at any instant when two of the three active units have failed.
States 6 and 8 designate operational states that are attained when the system
detects, identifies, and retires the failed active unit and then replaces it with
the spare.

In terms of the previous notation, zZg = o, z, =1, z, = 2, zq = 3, a= {1},
B = {3}, and C = {2}. Por the sake of simplicity, take Ay = A and assume that
the response time distributions G(x;1,6) and G(x;2,8) are identical. The time
{measured from the instant of entering state 2) needed to switch the spare to active
status has a distribution limited to (0,A); that is, A is chosen equal to the

length of the cycling interval and G(A:2,3) = 0.

The bounds have the form

PU(t) H(t) a;by3cqy

and

- 1] ]
PL(t) H{t - A) a1b13c12

where a, = 2A(3) + W71, A = 24, H(x) = 1 - exp{-(3)x + p)x}, and b13, Cigr
by3, and cqp are given by equations (11), (12), (16), and (17), respectively:

b, =./. G(x;2,8) dG(x;2,3)
0
Crp = WG, (8) uy(A) + M (M} + w2x + W & (n)
by3 = {by3 - G5(4)} exp(-2)4)
c1p = u{G,(8) uy(A) + 8G,(8)} expl-(2X + Al

To compare the upper and lower bounds for the probability of hitting state 3
prior to completing the mission in 1 hr (t = 1), suppose that A = 0.003,
p=X=0.001, and experimental results give G(A;1,6) = 0.04, uz(A) = 0,002,
and b,y = 0.68. Then, EZ(A) = 0.04, 53(A) = 0, and upper and lower bounds are

Py(t) = 1.81 x 10" and Pp(t) = 2.74 x 10-9, respectively.

The difference between the upper and lower bounds is largely due to the dif-
ference in ¢,, and cy2, but this in turn can be attributed to a lack of infor-
mation concerning the shapes of the distributions above the limit A.

10




If it is assumed that G(x;2,3) is a uniform distribution over (0,A), then
less information is needed to compute the bounds; in this case,

A
-1 - -1 -
by = A fo G(x;2,3) dx = A" {6,(A) w,(A) + AG, ()}

and substitution gives b;5 = 0.68.

CONCLUDING REMARKS

In this paper a semi-Markov model has been analyzed to give upper and lower
bounds for system unreliability. The model provides for multiple competing system
responses to component failures and is flexible in terms of describing the distri-
butions of system response times. We have shown that accuracy of the bounds
increases in the limit as the component failure rates and as the survivor functions
of minimum response times decrease to 0. Thus, generally if the response time
distributions are concentrated over a narrow range, accurate bounds would be given
by selecting percentiles at the upper end of this range. The best choice of param-
eters for representing the bounds depends on the available information; in the
experimental context, percentiles and conditional means appear preferable to other
parameters because of the ease of substituting censoring points for percentiles and
the ease of directly estimating the conditional mean response times.

NASA Langley Research Center
Hampton, VA 23665
December 17, 1984
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Figure 1.- State diagram for an example system consisting of
three active processor units and one spare.
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