960 research outputs found

    Splash control of drop impacts with geometric targets

    Full text link
    Drop impacts on solid and liquid surfaces exhibit complex dynamics due to the competition of inertial, viscous, and capillary forces. After impact, a liquid lamella develops and expands radially, and under certain conditions, the outer rim breaks up into an irregular arrangement of filaments and secondary droplets. We show experimentally that the lamella expansion and subsequent break up of the outer rim can be controlled by length scales that are of comparable dimension to the impacting drop diameter. Under identical impact parameters, ie. fluid properties and impact velocity, we observe unique splashing dynamics by varying the target cross-sectional geometry. These behaviors include: (i) geometrically-shaped lamellae and (ii) a transition in splashing stability, from regular to irregular splashing. We propose that regular splashes are controlled by the azimuthal perturbations imposed by the target cross-sectional geometry and that irregular splashes are governed by the fastest-growing unstable Plateau-Rayleigh mode

    Drop Splashing on a Dry Smooth Surface

    Full text link
    The corona splash due to the impact of a liquid drop on a smooth dry substrate is investigated with high speed photography. A striking phenomenon is observed: splashing can be completely suppressed by decreasing the pressure of the surrounding gas. The threshold pressure where a splash first occurs is measured as a function of the impact velocity and found to scale with the molecular weight of the gas and the viscosity of the liquid. Both experimental scaling relations support a model in which compressible effects in the gas are responsible for splashing in liquid solid impacts.Comment: 11 pages, 4 figure

    Characterization and Quantification of Isoprene-Derived Epoxydiols in Ambient Aerosol in the Southeastern United States

    Get PDF
    Isoprene-derived epoxydiols (IEPOX) are identified in ambient aerosol samples for the first time, together with other previously identified isoprene tracers (i.e., 2-methyltetrols, 2-methylglyceric acid, C5-alkenetriols, and organosulfate derivatives of 2-methyltetrols). Fine ambient aerosol collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS) was analyzed using both gas chromatography/quadrupole mass spectrometry (GC/MS) and gas chromatography/time-of-flight mass spectrometry (GC/TOFMS) with prior trimethylsilylation. Mass concentrations of IEPOX ranged from ~1 to 24 ng m^(−3) in the aerosol collected from the two sites. Detection of particle-phase IEPOX in the AMIGAS samples supports recent laboratory results that gas-phase IEPOX produced from the photooxidation of isoprene under low-NO_x conditions is a key precursor of ambient isoprene secondary organic aerosol (SOA) formation. On average, the sum of the mass concentrations of IEPOX and the measured isoprene SOA tracers accounted for about 3% of the organic carbon, demonstrating the significance of isoprene oxidation to the formation of ambient aerosol in this region

    Scaling dependence on the fluid viscosity ratio in the selective withdrawal transition

    Get PDF
    In the selective withdrawal experiment fluid is withdrawn through a tube with its tip suspended a distance S above a two-fluid interface. At sufficiently low withdrawal rates, Q, the interface forms a steady state hump and only the upper fluid is withdrawn. When Q is increased (or S decreased), the interface undergoes a transition so that the lower fluid is entrained with the upper one, forming a thin steady-state spout. Near this transition the hump curvature becomes very large and displays power-law scaling behavior. This scaling allows for steady-state hump profiles at different flow rates and tube heights to be scaled onto a single similarity profile. I show that the scaling behavior is independent of the viscosity ratio.Comment: 33 Pages, 61 figures, 1 tabl

    Influence of aerosol acidity on the chemical composition of secondary organic aerosol from β-caryophyllene

    Get PDF
    The secondary organic aerosol (SOA) yield of β-caryophyllene photooxidation is enhanced by aerosol acidity. In the present study, the influence of aerosol acidity on the chemical composition of β-caryophyllene SOA is investigated using ultra performance liquid chromatography/electrospray ionization-time-of-flight mass spectrometry (UPLC/ESI-TOFMS). A number of first-, second- and higher-generation gas-phase products having carbonyl and carboxylic acid functional groups are detected in the particle phase. Particle-phase reaction products formed via hydration and organosulfate formation processes are also detected. Increased acidity leads to different effects on the abundance of individual products; significantly, abundances of organosulfates are correlated with aerosol acidity. To our knowledge, this is the first detection of organosulfates and nitrated organosulfates derived from a sesquiterpene. The increase of certain particle-phase reaction products with increased acidity provides chemical evidence to support the acid-enhanced SOA yields. Based on the agreement between the chromatographic retention times and accurate mass measurements of chamber and field samples, three β-caryophyllene products (i.e., β-nocaryophyllon aldehyde, β-hydroxynocaryophyllon aldehyde, and β-dihydroxynocaryophyllon aldehyde) are suggested as chemical tracers for β-caryophyllene SOA. These compounds are detected in both day and night ambient samples collected in downtown Atlanta, GA and rural Yorkville, GA during the 2008 August Mini-Intensive Gas and Aerosol Study (AMIGAS)

    Seasonal characterization of submicron aerosol chemical composition and organic aerosol sources in the southeastern United States: Atlanta, Georgia,and Look Rock, Tennessee

    Get PDF
    A year-long near-real-time characterization of non-refractory submicron aerosol (NR-PM1) was conducted at an urban (Atlanta, Georgia, in 2012) and rural (Look Rock, Tennessee, in 2013) site in the southeastern US using the Aerodyne Aerosol Chemical Speciation Monitor (ACSM) collocated with established air-monitoring network measurements. Seasonal variations in organic aerosol (OA) and inorganic aerosol species are attributed to meteorological conditions as well as anthropogenic and biogenic emissions in this region. The highest concentrations of NR-PM1 were observed during winter and fall seasons at the urban site and during spring and summer at the rural site. Across all seasons and at both sites, NR-PM1 was composed largely of OA (up to 76 %) and sulfate (up to 31 %). Six distinct OA sources were resolved by positive matrix factorization applied to the ACSM organic mass spectral data collected from the two sites over the 1 year of near-continuous measurements at each site: hydrocarbon-like OA (HOA), biomass burning OA (BBOA), semi-volatile oxygenated OA (SV-OOA), low-volatility oxygenated OA (LV-OOA), isoprene-derived epoxydiols (IEPOX) OA (IEPOX-OA) and 91Fac (a factor dominated by a distinct ion at m∕z 91 fragment ion previously observed in biogenic influenced areas). LV-OOA was observed throughout the year at both sites and contributed up to 66 % of total OA mass. HOA was observed during the entire year only at the urban site (on average 21 % of OA mass). BBOA (15–33 % of OA mass) was observed during winter and fall, likely dominated by local residential wood burning emission. Although SV-OOA contributes quite significantly ( ∼  27 %), it was observed only at the urban site during colder seasons. IEPOX-OA was a major component (27–41 %) of OA at both sites, particularly in spring and summer. An ion fragment at m∕z 75 is well correlated with the m∕z 82 ion associated with the aerosol mass spectrum of IEPOX-derived secondary organic aerosol (SOA). The contribution of 91Fac to the total OA mass was significant (on average 22 % of OA mass) at the rural site only during warmer months. Comparison of 91Fac OA time series with SOA tracers measured from filter samples collected at Look Rock suggests that isoprene oxidation through a pathway other than IEPOX SOA chemistry may contribute to its formation. Other biogenic sources could also contribute to 91Fac, but there remains a need to resolve the exact source of this factor based on its significant contribution to rural OA mass.</html

    Geographies of science and technology 1:Boundaries and crossings

    Get PDF
    In a world of accelerating environmental crises, global pandemics and seemingly unstoppable datafication of anything that moves, thinks or feels, the politics of science and technology are pervasive. In this first of three progress reports on the geographies of science and technology, I home in on some definitional questions which an account of anything like a new or emerging subfield must necessarily concern itself. I examine how geographers have addressed the spatial effects of the making and unmaking of boundaries between science, technology and their various outsides. While work on historical and contemporary geographies of technoscience has often pulled in slightly different directions, I identify some promising convergences around questions of political economy and on the topic of scale as an emergent property of technoscientific practices. New attention is also falling on the spatial practices through which technoscience gets plugged into wider worlds, such as politics and policymaking, while geographers have also been busy disrupting, in a more experimental mode, conventional boundaries and hierarchies of technoscientific practice. Finally, the report examines recent and welcome efforts to convene new conversations around the geography of technology but cautions against the potential seduction of the new, the innovative and the ‘disruptive’. Important recent work in cultural geography has purposively unsettled assumed hierarchies of ‘high’ and ‘low’ tech, new and old, and suggests that any nascent subfield of ‘geography of technology’ needs to reflexively attend to how boundaries get drawn around ‘technology’, and with what effects
    corecore