18,157 research outputs found
Strichartz estimates for the Schr\"odinger equation on polygonal domains
We prove Strichartz estimates with a loss of derivatives for the
Schr\"odinger equation on polygonal domains with either Dirichlet or Neumann
homogeneous boundary conditions. Using a standard doubling procedure, estimates
the on polygon follow from those on Euclidean surfaces with conical
singularities. We develop a Littlewood-Paley squarefunction estimate with
respect to the spectrum of the Laplacian on these spaces. This allows us to
reduce matters to proving estimates at each frequency scale. The problem can be
localized in space provided the time intervals are sufficiently small.
Strichartz estimates then follow from a result of the second author regarding
the Schr\"odinger equation on the Euclidean cone.Comment: 12 page
Observation of enhanced optical spring damping in a macroscopic mechanical resonator and application for parametric instability control in advanced gravitational-wave detectors
We show that optical spring damping in an optomechanical resonator can be enhanced by injecting a phase delay in the laser frequency-locking servo to rotate the real and imaginary components of the optical spring constant. This enhances damping at the expense of optical rigidity. We demonstrate enhanced parametric damping which reduces the Q factor of a 0.1-kg-scale resonator from 1.3×10^5 to 6.5×10^3. By using this technique adequate optical spring damping can be obtained to damp parametric instability predicted for advanced laser interferometer gravitational-wave detectors
Renormalization Group and Grand Unification with 331 Models
By making a renormalization group analysis we explore the possibility of
having a 331 model as the only intermediate gauge group between the standard
model and the scale of unification of the three coupling constants. We shall
assume that there is no necessarily a group of grand unification at the scale
of convergence of the couplings. With this scenario, different 331 models and
their corresponding supersymmetric versions are considered, and we find the
versions that allow the symmetry breaking described above. Besides, the allowed
interval for the 331 symmetry breaking scale, and the behavior of the running
coupling constants are obtained. It worths saying that some of the
supersymmetric scenarios could be natural frameworks for split supersymmetry.
Finally, we look for possible 331 models with a simple group at the grand
unification scale, that could fit the symmetry breaking scheme described above.Comment: 18 pages. 3 figures. Some results reinterpreted, a new section and
references added. Version to appear in International Journal of Modern
Physics
On transversally elliptic operators and the quantization of manifolds with -structure
An -structure on a manifold is an endomorphism field
\phi\in\Gamma(M,\End(TM)) such that . Any -structure
determines an almost CR structure E_{1,0}\subset T_\C M given by the
-eigenbundle of . Using a compatible metric and connection
on , we construct an odd first-order differential operator ,
acting on sections of , whose principal symbol is of the
type considered in arXiv:0810.0338. In the special case of a CR-integrable
almost -structure, we show that when is the generalized
Tanaka-Webster connection of Lotta and Pastore, the operator is given by D
= \sqrt{2}(\dbbar+\dbbar^*), where \dbbar is the tangential Cauchy-Riemann
operator.
We then describe two "quantizations" of manifolds with -structure that
reduce to familiar methods in symplectic geometry in the case that is a
compatible almost complex structure, and to the contact quantization defined in
\cite{F4} when comes from a contact metric structure. The first is an
index-theoretic approach involving the operator ; for certain group actions
will be transversally elliptic, and using the results in arXiv:0810.0338,
we can give a Riemann-Roch type formula for its index. The second approach uses
an analogue of the polarized sections of a prequantum line bundle, with a CR
structure playing the role of a complex polarization.Comment: 31 page
Support for Integrated Ecosystem Assessments of NOAA’s National Estuarine Research Reserves System (NERRS), Volume I: The Impacts of Coastal Development on the Ecology and Human Well-being of Tidal Creek Ecosystems of the US Southeast
A study was conducted, in association with the Sapelo Island and North Carolina National Estuarine Research Reserves (NERRs), to evaluate the impacts of coastal development on sentinel habitats (e.g., tidal creek ecosystems), including potential impacts to human health and well-being. Uplands associated with southeastern tidal creeks and the salt marshes they drain are popular locations for building homes, resorts, and recreational facilities because of the high quality of life and mild climate associated with these environments. Tidal creeks form part of the estuarine ecosystem characterized by high biological productivity, great ecological value, complex environmental gradients, and numerous interconnected processes. This research combined a watershed-level study integrating ecological, public health and human dimension attributes with watershed-level land use data. The approach used for this research was based upon a comparative watershed and ecosystem approach that sampled tidal creek networks draining developed watersheds (e.g., suburban, urban, and industrial) as well as undeveloped sites. The primary objective of this work was to clearly define the relationships between coastal development with its concomitant land use changes and non-point source pollution loading and the ecological and human health and well-being status of tidal creek ecosystems.
Nineteen tidal creek systems, located along the southeastern United States coast from southern North Carolina to southern Georgia, were sampled during summer (June-August), 2005 and 2006. Within each system, creeks were divided into two primary segments based upon tidal zoning: intertidal (i.e., shallow, narrow headwater sections) and subtidal (i.e., deeper and wider sections), and watersheds were delineated for each segment. In total, we report findings on 24 intertidal and 19 subtidal creeks. Indicators sampled throughout each creek included water quality (e.g., dissolved oxygen concentration, salinity, nutrients, chlorophyll-a levels), sediment quality (e.g., characteristics, contaminants levels including emerging contaminants), pathogen and viral indicators, and abundance and genetic responses of biological resources (e.g., macrobenthic and nektonic communities, shellfish tissue contaminants, oyster microarray responses).
For many indicators, the intertidally-dominated or headwater portions of tidal creeks were found to respond differently than the subtidally-dominated or larger and deeper portions of tidal creeks. Study results indicate that the integrity and productivity of headwater tidal creeks were impaired by land use changes and associated non-point source pollution, suggesting these habitats are valuable early warning sentinels of ensuing ecological impacts and potential public health threats. For these headwater creeks, this research has assisted the validation of a previously developed conceptual model for the southeastern US region. This conceptual model identified adverse changes that generally occurred in the physical and chemical environment (e.g., water quality indicators such as indicator bacteria for sewage pollution or sediment chemical contamination) when impervious cover levels in the watershed reach 10-20%. Ecological characteristics responded and were generally impaired when impervious cover levels exceed 20-30%. Estimates of impervious cover levels defining where human uses are impaired are currently being determined, but it appears that shellfish bed closures and the flooding vulnerability of headwater regions become a concern when impervious cover values exceed 10-30%. This information can be used to forecast the impacts of changing land use patterns on tidal creek environmental quality as well as associated human health and well-being. In addition, this study applied tools and technologies that are adaptable, transferable, and repeatable among the high quality NERRS sites as comparable reference entities to other nearby developed coastal watersheds. The findings herein will be of value in addressing local, regional and national needs for understanding multiple stressor (anthropogenic and human impacts) effects upon estuarine ecosystems and response trends in ecosystem condition with changing coastal impacts (i.e., development, climate change). (PDF contaions 88 pages
The discovery of optical emission from the SNR G 126.2 + 1.6
Interference filter photographs were used to identify an arc of nebulosity that is coincident with the radio contours of the galactic supernova remnant G 126.2 + 1.6. Spectrophotometry of the filament shows that the emission line spectrum matches the spectra of other galactic supernova remnants. In particular, the arc shows the usual strong SII, and NII emission lines seen in other remnants and unusually strong OII emission as seen in a few remnants. The spectrum can be adequately matched by a shock of velocity near 100 km/s in an interstellar cloud of density 3. If the SNR is at a distance of 4.5 kpc as indicated by the radio signal-D relation, then the observed pressure in the filament requires an initial energy near 4 x 10 to the 51st power (d/4.5 kpc) to the 3rd power ergs
- …
