9 research outputs found
Determination of <i>N</i>-Acetyl-L-cysteine Ethyl Ester (NACET) by Sequential Injection Analysis
New sequential injection analysis (SIA) methods with optical sensing for the determination of N-acetyl-L-cysteine ethyl ester (NACET) have been developed and optimized. NACET is a potential drug and antioxidant with advantageous pharmacokinetics. The methods involve the reduction of Cu(II) in its complexes with neocuproine (NCN), bicinchoninic acid (BCA), and bathocuproine disulfonic acid (BCS) to the corresponding chromophoric Cu(I) complexes by the analyte. The absorbance of the Cu(I) complexes with NCN, BCA, and BCS was measured at their maximum absorbance wavelengths of 458, 562, and 483 nm, respectively. The sensing manifold parameters and experimental conditions were optimized for each of the Cu(II) complexes used. Under optimal conditions, the corresponding linear calibration ranges, limits of detection, and sampling rates were 8.0 × 10-6-2.0 × 10-4 mol L-1, 5.5 × 10-6 mol L-1, and 60 h-1 for NCN; 6.0 × 10-6-1.0 × 10-4 mol L-1, 5.2 × 10-6 mol L-1, and 60 h-1 for BCA; and 4.0 × 10-6-1.0 × 10-4 mol L-1, 2.6 × 10-6 mol L-1, and 78 h-1 for BCS. The Cu(II)-BCS complex was found to be best performing in terms of sensitivity and sampling rate. Usual excipients in pharmaceutical preparations did not interfere with NACET analysis
Assessing the Stability of Polymer Inclusion Membranes: The Case of Aliquat 336-Based Membranes
Leaching of the extractant from polymer inclusion membranes (PIMs) into the feed and receiving aqueous solutions shortens their life. Therefore, when a particular PIM extractant has been selected, it is important to choose a base polymer that will minimize to the greatest extent extractant leaching compared to other base polymers, thus providing the best stability of the PIM. However, comparisons of the stability of PIMs composed of the same extractant and different base polymers is usually conducted by multiple cycles of extraction and back-extraction steps, which are time-consuming and labor-intensive. An alternative approach based on thermal analysis (thermogravimetric analysis (TGA) and differential thermal analysis (DTA)) was developed and applied to PIMs containing 40 wt.% Aliquat 336, one of the most frequently used PIM extractants, and the three most frequently used PIM base polymers, i.e., poly(vinyl chloride) (PVC), cellulose triacetate (CTA), and poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP). The temperatures and enthalpies associated with Aliquat 336 release were compared, with PVDF-HFP exhibiting the highest values, indicating the strongest interaction between the extractant and the polymer matrix and, thus, the highest stability. The PVC-based PIM was predicted to be the most prone to extractant leaching among the PIMs studied. This stability ranking was confirmed theoretically by quantum chemistry (DFT) calculations, which provided molecular-level insights into the likely interaction sites between Aliquat 336 and the polymer chains. An experimental validation of the above leaching order was also provided by PIM leaching experiments in aqueous 0.1 M and 0.05 M NaCl solutions, where membrane mass losses over a 24 h period were determined. The results of the current study demonstrated thermal analysis to be a fast and viable approach in comparing the stability of PIMs with the same extractant but different base polymers
Sequential Injection Analysis Method for the Determination of Glutathione in Pharmaceuticals
A sequential injection analysis method for the determination of glutathione (GSH) in pharmaceuticals has been developed. It is based on the reduction of the Cu(II)-neocuproine complex by GSH and the formation of an orange-yellow colored Cu(I)-neocuproine complex with maximum absorbance at 458 nm. Under optimal conditions the method is characterized by a linear calibration range of 6.0 × 10−7–8.0 × 10−5 mol L−1 (Amax = 3270 CGSH − 0.0010; R2 = 0.9983), limit of detection of 2.0 × 10−7 mol L−1, limit of quantification of 6.7 × 10−7 mol L−1, repeatability (expressed as relative standard deviation) of 3.8%, and sampling rate of 60 h−1. The newly developed method has been successfully applied to the determination of GSH in pharmaceutical samples with no statistically significant difference between the results obtained and those produced by the standard Pharmacopoeia method
Determination of N-Acetyl-L-cysteine Ethyl Ester (NACET) by Sequential Injection Analysis
New sequential injection analysis (SIA) methods with optical sensing for the determination of N-acetyl-L-cysteine ethyl ester (NACET) have been developed and optimized. NACET is a potential drug and antioxidant with advantageous pharmacokinetics. The methods involve the reduction of Cu(II) in its complexes with neocuproine (NCN), bicinchoninic acid (BCA), and bathocuproine disulfonic acid (BCS) to the corresponding chromophoric Cu(I) complexes by the analyte. The absorbance of the Cu(I) complexes with NCN, BCA, and BCS was measured at their maximum absorbance wavelengths of 458, 562, and 483 nm, respectively. The sensing manifold parameters and experimental conditions were optimized for each of the Cu(II) complexes used. Under optimal conditions, the corresponding linear calibration ranges, limits of detection, and sampling rates were 8.0 × 10−6–2.0 × 10−4 mol L−1, 5.5 × 10−6 mol L−1, and 60 h−1 for NCN; 6.0 × 10−6–1.0 × 10−4 mol L−1, 5.2 × 10−6 mol L−1, and 60 h−1 for BCA; and 4.0 × 10−6–1.0 × 10−4 mol L−1, 2.6 × 10−6 mol L−1, and 78 h−1 for BCS. The Cu(II)-BCS complex was found to be best performing in terms of sensitivity and sampling rate. Usual excipients in pharmaceutical preparations did not interfere with NACET analysis
Proglomena: Globalisation, cultural identity and diversity
Globalisation and the mass communication revolution of the last 40 years has made the world a much smaller place. It has brought diverse cultures, traditions and languages in far greater contact than was previously possible. The expansion of the free market economy and the growth of transnational corporations has also brought both East and West, as well as North and South in closer contact. While the potential for mutual understanding is great, so is the potential for conflict. The forces which shape cultural identity are varied and the challenge is to appreciate the influences that shape our values and beliefs so that we can understand ourselves. In doing so, we are in a better position to value diverse cultures, religions, languages and traditions and recognise their preciousness. This is important if globalisation is not to result in the growth of a monoculture that destroys the rich diversity of culture as well as our individual cultural identities
The Maliac Ocean: the origin of the Tethyan Hellenic ophiolites
International audienceThe Hellenides, part of the Alpine orogeny in Greece, are rich in ophiolitic units. These ophiolites and associated units emplaced during Jurassic obduction, testify for the existence of one, or several, Tethyan oceanic realms. The paleogeography of these oceanic areas has not been precisely described. However, all the authors now agree on the presence of a main Triassic-Jurassic ocean on the eastern side of the Pelagonian zone (Vardar Domain). We consider that this Maliac Ocean is the most important ocean in Greece and Albania. Here, we limit the detailed description of the Maliac Ocean to the pre-convergence period of approximately 70 Ma between the Middle Triassic rifting to the Middle Jurassic convergence period. A quick overview on the destiny of the different parts of the Maliac Ocean during the convergence period is also proposed. The studied exposures allow to reconstruct: (1) the Middle to Late Triassic Maliac oceanic lithosphere, corresponding to the early spreading activity at a Mid-Oceanic Ridge; (2) the Western Maliac Margin, widely exposed in the Othris and Argolis areas; (3) the Eastern-Maliac Margin in the eastern Vardar domain (Peonias and Paikon zones). We established the following main characteristics of the Maliac Ocean: (1) the Middle Triassic rifting marked by a rapid subsidence and volcanism seems to be short-lived (few My); (2) the Maliac Lithosphere is only represented by Middle to Late Triassic units, especially the Fourka unit, composed of WPB-OIB and MORB pillow-lavas, locally covered by a pelagic Middle Triassic to Middle Jurassic sedimentary cover; (3) the Western Margin is the most complete and our data allow to distinguish a proximal and a deeper distal margin; (4) the evolution of the Eastern Margin (Peonias and Paikon series) is similar to that of the W-Margin, except for its Jurassic terrigenous sediments, while the proximal W-Margin was dominated by calcarenites; (5) we show that the W- and E-margins are not Volcanic Passive Margins; and (6) during the Middle Jurassic convergence period, the Eastern Margin became an active margin and both margins were affected by obduction processes
