756 research outputs found

    Recent and future trends in synthetic greenhouse gas radiative forcing

    Get PDF
    Atmospheric measurements show that emissions of hydrofluorocarbons (HFCs) and hydrochlorofluorocarbons are now the primary drivers of the positive growth in synthetic greenhouse gas (SGHG) radiative forcing. We infer recent SGHG emissions and examine the impact of future emissions scenarios, with a particular focus on proposals to reduce HFC use under the Montreal Protocol. If these proposals are implemented, overall SGHG radiative forcing could peak at around 355 mW m[superscript −2] in 2020, before declining by approximately 26% by 2050, despite continued growth of fully fluorinated greenhouse gas emissions. Compared to “no HFC policy” projections, this amounts to a reduction in radiative forcing of between 50 and 240 mW m[superscript −2] by 2050 or a cumulative emissions saving equivalent to 0.5 to 2.8 years of CO2 emissions at current levels. However, more complete reporting of global HFC emissions is required, as less than half of global emissions are currently accounted for.Natural Environment Research Council (Great Britain) (Advanced Research Fellowship NE/I021365/1)United States. National Aeronautics and Space Administration (Upper Atmospheric Research Program Grant NNX11AF17G)United States. National Oceanic and Atmospheric Administratio

    Natural and anthropogenic changes in atmospheric greenhouse gases over the past 2 millennia

    Get PDF
    Millennial changes in atmospheric trace gas composition are best determined from air enclosed in ice sheets. Air extracted from the open pores in firn and the bubbles in ice is measured to derive the past concentrations and isotopic ratios of the long lived trace gases. The significant increases observed in CO2, CH4 and N2O since about 1750 and the more recent appearance of synthetic gases such as the CFCs in the atmosphere are a key feature of the anthropocene. The millennia preceding the anthropocene, the Late Pre-Industrial Holocene (LPIH), show evidence of natural changes in trace gases that can be used to constrain models and improve their ability to predict future changes under scenarios of anthropogenic emissions and climate change. Precise measurements and ice core air samples that are accurately dated and highly resolved in time are required to record the small and rapid trace gas signals of this period. The atmospheric composition records produced by CSIRO and collaborators using the Law Dome, Antarctica ice cores are widely used in models of climate, atmospheric chemistry and the carbon cycle over the anthropocene and the LPIH. Results from these studies have been influential in informing global policies, including the Montreal and Kyoto Protocols. We will present the recently revised trace gas records from Law Dome and new measurements of tracers from these and other ice sites that reveal the causes of atmospheric changes over the anthropocene and the LPIH

    Global and regional emissions estimates for N2O

    Get PDF
    We present a comprehensive estimate of nitrous oxide (N2O) emissions using observations and models from 1995 to 2008. High-frequency records of tropospheric N2O are available from measurements at Cape Grim, Tasmania; Cape Matatula, American Samoa; Ragged Point, Barbados; Mace Head, Ireland; and at Trinidad Head, California using the Advanced Global Atmospheric Gases Experiment (AGAGE) instrumentation and calibrations. The Global Monitoring Division of the National Oceanic and Atmospheric Administration/Earth System Research Laboratory (NOAA/ESRL) has also collected discrete air samples in flasks and in situ measurements from remote sites across the globe and analyzed them for a suite of species including N2O. In addition to these major networks, we include in situ and aircraft measurements from the National Institute of Environmental Studies (NIES) and flask measurements from the Tohoku University and Commonwealth Scientific and Industrial Research Organization (CSIRO) networks. All measurements show increasing atmospheric mole fractions of N2O, with a varying growth rate of 0.1-0.7% per year, resulting in a 7.4% increase in the background atmospheric mole fraction between 1979 and 2011. Using existing emission inventories as well as bottom-up process modeling results, we first create globally gridded a priori N2O emissions over the 37 years since 1975. We then use the three-dimensional chemical transport model, Model for Ozone and Related Chemical Tracers version 4 (MOZART v4), and a Bayesian inverse method to estimate global as well as regional annual emissions for five source sectors from 13 regions in the world. This is the first time that all of these measurements from multiple networks have been combined to determine emissions. Our inversion indicates that global and regional N2O emissions have an increasing trend between 1995 and 2008. Despite large uncertainties, a significant increase is seen from the Asian agricultural sector in recent years, most likely due to an increase in the use of nitrogenous fertilizers, as has been suggested by previous studies.</p

    Exploring causes of interannual variability in the seasonal cycles of tropospheric nitrous oxide

    Get PDF
    Seasonal cycles in the mixing ratios of tropospheric nitrous oxide (N[subscript 2]O) are derived by detrending long-term measurements made at sites across four global surface monitoring networks. The detrended monthly data display large interannual variability, which at some sites challenges the concept of a "mean" seasonal cycle. In the Northern Hemisphere, correlations between polar winter lower stratospheric temperature and detrended N[subscript 2]O data, around the month of the seasonal minimum, provide empirical evidence for a stratospheric influence, which varies in strength from year to year and can explain much of the interannual variability in the surface seasonal cycle. Even at sites where a strong, competing, regional N[subscript 2]O source exists, such as from coastal upwelling at Trinidad Head, California, the stratospheric influence must be understood to interpret the biogeochemical signal in monthly mean data. In the Southern Hemisphere, detrended surface N[subscript 2]O monthly means are correlated with polar spring lower stratospheric temperature in months preceding the N[subscript 2]O minimum, providing empirical evidence for a coherent stratospheric influence in that hemisphere as well, in contrast to some recent atmospheric chemical transport model (ACTM) results. Correlations between the phasing of the surface N[subscript 2]O seasonal cycle in both hemispheres and both polar lower stratospheric temperature and polar vortex break-up date provide additional support for a stratospheric influence. The correlations discussed above are generally more evident in high-frequency in situ data than in data from weekly flask samples. Furthermore, the interannual variability in the N[subscript 2]O seasonal cycle is not always correlated among in situ and flask networks that share common sites, nor do the mean seasonal amplitudes always agree. The importance of abiotic influences such as the stratospheric influx and tropospheric transport on N[subscript 2]O seasonal cycles suggests that, at sites remote from local sources, surface N[subscript 2]O mixing ratio data by themselves are unlikely to provide information about seasonality in surface sources, e.g., for atmospheric inversions, unless the ACTMs employed in the inversions accurately account for these influences. An additional abioitc influence is the seasonal ingassing and outgassing of cooling and warming surface waters, which creates a thermal signal in tropospheric N[subscript 2]O that is of particular importance in the extratropical Southern Hemisphere, where it competes with the biological ocean source signal.United States. National Aeronautics and Space Administration (grant NNX08AB48G

    Isoforms of U1-70k control subunit dynamics in the human spliceosomal U1 snRNP

    Get PDF
    Most human protein-encoding genes contain multiple exons that are spliced together, frequently in alternative arrangements, by the spliceosome. It is established that U1 snRNP is an essential component of the spliceosome, in human consisting of RNA and ten proteins, several of which are post- translationally modified and exist as multiple isoforms. Unresolved and challenging to investigate are the effects of these post translational modifications on the dynamics, interactions and stability of the particle. Using mass spectrometry we investigate the composition and dynamics of the native human U1 snRNP and compare native and recombinant complexes to isolate the effects of various subunits and isoforms on the overall stability. Our data reveal differential incorporation of four protein isoforms and dynamic interactions of subunits U1-A, U1-C and Sm-B/B’. Results also show that unstructured post- ranslationally modified C-terminal tails are responsible for the dynamics of Sm-B/B’ and U1-C and that their interactions with the Sm core are controlled by binding to different U1-70k isoforms and their phosphorylation status in vivo. These results therefore provide the important functional link between proteomics and structure as well as insight into the dynamic quaternary structure of the native U1 snRNP important for its function.This work was funded by: BBSRC (OVM), BBSRC and EPSRC (HH and NM), EU Prospects (HH), European Science Foundation (NM), the Royal Society (CVR), and fellowship from JSPS and HFSP (YM and DAPK respectively)

    The Antarctic ozone hole during 2014

    Get PDF
    We review the 2014 Antarctic ozone hole, making use of a variety of ground-based and space-based measurements of ozone and ultra-violet radiation, supplemented by meteorological reanalyses. Although the polar vortex was relatively stable in 2014 and persisted some weeks longer into November than was the case in 2012 or 2013, the vortex temperature was close to the long-term mean in September and October with modest warming events occurring in both months, preventing severe depletion from taking place. Of the seven metrics reported here, all were close to their respective median values of the 1979–2014 record, being ranked between 16th and 21st of the 35 years for which adequate satellite observations exist

    The Antarctic ozone hole during 2015 and 2016

    Get PDF
    We reviewed the 2015 and 2016 Antarctic ozone holes, making use of a variety of ground-based and spacebased measurements of ozone and ultraviolet radiation, supplemented by meteorological reanalyses. The ozone hole of 2015 was one of the most severe on record with respect to maximum area and integrated deficit and was notably longlasting, with many values above previous extremes in October, November and December. In contrast, all assessed metrics for the 2016 ozone hole were at or below their median values for the 37 ozone holes since 1979 for which adequate satellite observations exist. The 2015 ozone hole was influenced both by very cold conditions and enhanced ozone depletion caused by stratospheric aerosol resulting from the April 2015 volcanic eruption of Calbuco (Chile)

    Isotopic ordering in atmospheric O2 as a tracer of ozone photochemistry and the tropical atmosphere

    Get PDF
    The distribution of isotopes within O2 molecules can be rapidly altered when they react with atomic oxygen. This mechanism is globally important: while other contributions to the global budget of O2 impart isotopic signatures, the O(3P) + O2 reaction resets all such signatures in the atmosphere on subdecadal timescales. Consequently, the isotopic distribution within O2 is determined by O3 photochemistry and the circulation patterns that control where that photochemistry occurs. The variability of isotopic ordering in O2 has not been established, however. We present new measurements of 18O18O in air (reported as Δ36 values) from the surface to 33 km altitude. They confirm the basic features of the clumped-isotope budget of O2: Stratospheric air has higher Δ36 values than tropospheric air (i.e., more 18O18O), reflecting colder temperatures and fast photochemical cycling of O3. Lower Δ36 values in the troposphere arise from photochemistry at warmer temperatures balanced by the influx of high-Δ36 air from the stratosphere. These observations agree with predictions derived from the GEOS-Chem chemical transport model, which provides additional insight. We find a link between tropical circulation patterns and regions where Δ36 values are reset in the troposphere. The dynamics of these regions influences lapse rates, vertical and horizontal patterns of O2 reordering, and thus the isotopic distribution toward which O2 is driven in the troposphere. Temporal variations in Δ36 values at the surface should therefore reflect changes in tropospheric temperatures, photochemistry, and circulation. Our results suggest that the tropospheric O3 burden has remained within a ±10% range since 1978
    corecore