72 research outputs found

    Effects of Low-Dose Drinking Water Arsenic on Mouse Fetal and Postnatal Growth and Development

    Get PDF
    © The Author(s), 2012. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in PLoS One 7 (2012): e38249, doi:10.1371/journal.pone.0038249.Arsenic (As) exposure is a significant worldwide environmental health concern. Chronic exposure via contaminated drinking water has been associated with an increased incidence of a number of diseases, including reproductive and developmental effects. The goal of this study was to identify adverse outcomes in a mouse model of early life exposure to low-dose drinking water As (10 ppb, current U.S. EPA Maximum Contaminant Level). C57B6/J pups were exposed to 10 ppb As, via the dam in her drinking water, either in utero and/or during the postnatal period. Birth outcomes, the growth of the F1 offspring, and health of the dams were assessed by a variety of measurements. Birth outcomes including litter weight, number of pups, and gestational length were unaffected. However, exposure during the in utero and postnatal period resulted in significant growth deficits in the offspring after birth, which was principally a result of decreased nutrients in the dam's breast milk. Cross-fostering of the pups reversed the growth deficit. Arsenic exposed dams displayed altered liver and breast milk triglyceride levels and serum profiles during pregnancy and lactation. The growth deficits in the F1 offspring resolved following separation from the dam and cessation of exposure in male mice, but did not resolve in female mice up to six weeks of age. Exposure to As at the current U.S. drinking water standard during critical windows of development induces a number of adverse health outcomes for both the dam and offspring. Such effects may contribute to the increased disease risks observed in human populations.This work was supported by National Institute of Environmental Health Sciences at the National Institutes of Health grants 1F32 ES019070 (CDK-H) and P42 ES007373 (BPJ, JWH, RIE and CDK-H, Dartmouth Superfund Research Program Project Grant, Project 2 and Pilot Project)

    Low-dose arsenic compromises the immune response to influenza A infection in vivo

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Environmental Health Perspectives 117 (2009): 1441–1447, doi:10.1289/ehp.0900911.Arsenic exposure is a significant worldwide environmental health concern. We recently reported that 5-week exposure to environmentally relevant levels (10 and 100 ppb) of As in drinking water significantly altered components of the innate immune response in mouse lung, which we hypothesize is an important contributor to the increased risk of lung disease in exposed human populations. We investigated the effects of As exposure on respiratory influenza A (H1N1) virus infection, a common and potentially fatal disease. In this study, we exposed C57BL/6J mice to 100 ppb As in drinking water for 5 weeks, followed by intranasal inoculation with a sublethal dose of influenza A/PuertoRico/8/34 (H1N1) virus. Multiple end points were assessed postinfection. Arsenic was associated with a number of significant changes in response to influenza, including an increase in morbidity and higher pulmonary influenza virus titers on day 7 postinfection. We also found many alterations in the immune response relative to As-unexposed controls, including a decrease in the number of dendritic cells in the mediastinal lymph nodes early in the course of infection. Our data indicate that chronic As exposure significantly compromises the immune response to infection. Alterations in response to repeated lung infection may also contribute to other chronic illnesses, such as bronchiectasis, which is elevated by As exposure in epidemiology studies.This work was supported by grant P42 ES007373 from the National Institute of Environmental Health Sciences [J.W.H.; Superfund Basic Research Program (SBRP) Project 2]. C.D.K. was supported by a graduate fellowship from P42 ES007373 (SBRP, Training Core) and by National Institutes of Health predoctoral fellowship T32-DF007301

    Chronic exposure to arsenic in the drinking water alters the expression of immune response genes in mouse lung

    Get PDF
    This paper is not subject to U.S. copyright. The definitive version was published in Environmental Health Perspectives 117 (2009): 1108-1115, doi:10.1289/ehp.0800199.Chronic exposure to drinking water arsenic is a significant worldwide environmental health concern. Exposure to As is associated with an increased risk of lung disease, which may make it a unique toxicant, because lung toxicity is usually associated with inhalation rather than ingestion. The goal of this study was to examine mRNA and protein expression changes in the lungs of mice exposed chronically to environmentally relevant concentrations of As in the food or drinking water, specifically examining the hypothesis that As may preferentially affect gene and protein expression related to immune function as part of its mechanism of toxicant action. C57BL/6J mice fed a casein-based AIN-76A defined diet were exposed to 10 or 100 ppb As in drinking water or food for 5–6 weeks. Whole genome transcriptome profiling of animal lungs revealed significant alterations in the expression of many genes with functions in cell adhesion and migration, channels, receptors, differentiation and proliferation, and, most strikingly, aspects of the innate immune response. Confirmation of mRNA and protein expression changes in key genes of this response revealed that genes for interleukin 1β, interleukin 1 receptor, a number of toll-like receptors, and several cytokines and cytokine receptors were significantly altered in the lungs of As-exposed mice. These findings indicate that chronic low-dose As exposure at the current U.S. drinking-water standard can elicit effects on the regulation of innate immunity, which may contribute to altered disease risk, particularly in lung.This work was supported by National Institute of Environmental Health Science grant P42 ES007373 [J.W.H., Superfund Basic Research Program (SBRP) project 2]. C.D.K., A.P.N., and J.A.G. were supported by graduate and postdoctoral fellowships from P42 ES007373 (SBRP, Training Core). C.D.K. was also supported by National Institutes of Health training grant predoctoral fellowship T32-DF007301. P.L.E. and D.J.W. were supported by Cystic Fibrosis Foundation Research grant HL081289

    ADAM17-Mediated Processing of TNF-α Expressed by Antiviral Effector CD8+ T Cells Is Required for Severe T-Cell-Mediated Lung Injury

    Get PDF
    Influenza infection in humans evokes a potent CD8+ T-cell response, which is important for clearance of the virus but may also exacerbate pulmonary pathology. We have previously shown in mice that CD8+ T-cell expression of TNF-a is required for severe and lethal lung injury following recognition of an influenza antigen expressed by alveolar epithelial cells. Since TNF-a is first expressed as a transmembrane protein that is then proteolytically processed to release a soluble form, we sought to characterize the role of TNF-a processing in CD8+ T-cell-mediated injury. In this study we observed that inhibition of ADAM17-mediated processing of TNF-a by CD8+ T cells significantly attenuated the diffuse alveolar damage that occurs after T-cell transfer, resulting in enhanced survival. This was due in part to diminished chemokine expression, as TNF-aprocessing was required for lung epithelial cell expression of CXCL2 and the subsequent inflammatory infiltration. We confirmed the importance of CXCL2 expression in acute lung injury by transferring influenza-specific CD8+ T cells into transgenic mice lacking CXCR2. These mice exhibited reduced airway infiltration, attenuated lung injury, and enhanced survival. Theses studies describe a critical role for TNF-a processing by CD8+ T cells in the initiation and severity of acute lung injury, which may have important implications for limiting immunopathology during influenza infection and other human infectious or inflammatory diseases

    Monomethylarsonous Acid (MMAIII) Has an Adverse Effect on the Innate Immune Response of Human Bronchial Epithelial Cells to Pseudomonas Aeruginosa

    Get PDF
    Arsenic is the number one contaminant of concern with regard to human health according to the World Health Organization. Epidemiological studies on Asian and South American populations have linked arsenic exposure with an increased incidence of lung disease, including pneumonia, and chronic obstructive pulmonary disease, both of which are associated with bacterial infection. However, little is known about the effects of low dose arsenic exposure, or the contributions of organic arsenic to the innate immune response to bacterial infection. This study examined the effects on Pseudomonas aeruginosa (P. aeruginosa) induced cytokine secretion by human bronchial epithelial cells (HBEC) by inorganic sodium arsenite (iAsIII) and two major metabolites, monomethylarsonous acid (MMAIII) and dimethylarsenic acid (DMAV), at concentrations relevant to the U.S. population. Neither iAsIII nor DMAV altered P. aeruginosa induced cytokine secretion. By contrast, MMAIII increased P. aeruginosa induced secretion of IL-8, IL-6 and CXCL2. A combination of iAsIII, MMAIII and DMAV (10 pbb total) reduced IL-8 and CXCL1 secretion. These data demonstrate for the first time that exposure to MMAIII alone, and a combination of iAsIII, MMAIII and DMAV at levels relevant to the U.S. may have negative effects on the innate immune response of human bronchial epithelial cells to P. aeruginosa

    Spatial and temporal trends of the Stockholm Convention POPs in mothers’ milk — a global review

    Get PDF

    Response of the temporal turbulent boundary layer to decaying free-stream turbulence

    Get PDF
    The turbulent boundary layer developing under a turbulence-laden free stream is numerically investigated using the temporal boundary layer framework. This study focuses on the interaction between the fully turbulent boundary layer and decaying free-stream turbulence. Previous experiments and simulations of this physical problem have considered a spatially evolving boundary layer beset by free-stream turbulence. The state of the boundary layer at any given downstream position in fact reflects the accumulated history of the co-evolution of boundary layer and free-stream turbulence. The central aim of the present work is to isolate the effect of local free-stream disturbances existing at the same time as the ‘downstream’ boundary layer. The temporal framework used here helps expose when and how disturbances directly above the boundary layer actively impart change upon it. The bulk of our simulations were completed by seeding the free stream above boundary layers that were ‘pre-grown’ to a desired thickness with homogeneous isotropic turbulence from a precursor simulation. Moreover, this strategy allowed us to test various combinations of the turbulence intensity and large-eddy length scale of the free-stream turbulence with respect to the corresponding scales of the boundary layer. The relative large-eddy turnover time scale between the free-stream turbulence and the boundary layer emerges as an important parameter in predicting if the free-stream turbulence and boundary layer interaction will be ‘strong’ or ‘weak’ before the free-stream turbulence eventually fades to a negligible level. If the large-eddy turnover time scale of the free-stream turbulence is much smaller than that of the boundary layer, the interaction will be ‘weak’, as the free-stream disturbances will markedly decay before the boundary layer is able be altered significantly as a result of the free-stream disturbances. For a ‘strong’ interaction, the injected free-stream turbulence causes increased spreading of the boundary layer away from the wall, permitting large incursions of free-stream fluid deep within it

    Inter- and intra-specific competition between Paracentrotus lividus and Arbacia lixula in resource-limited barren areas

    No full text
    The sea urchins Paracentrotus lividus and Arbacia lixula coexist in the infralittoral zone along the Mediterranean and north-east Atlantic coasts. Through their grazing activity they can produce and maintain barren grounds, habitat characterised by low algal diversity and productivity. This study addresses the coexistence of these species within severely limited barren grounds by assessing differences in population structure, feeding preferences and conditions. Density, size structure, feeding conditions and gut contents of the two species, along with the associated algal assemblage were analysed in a hierarchical sampling design (Locations: thousands of meters apart; Sites: hundreds of meters apart). The algal assemblage, dominated by encrusting corallines (EC), was depauperate with bare rocks representing around 67% of the total percent cover, and homogeneous both at the Site and at the Location level. Sea urchins showed significant variability in density and gut conditions only at the Site level. No compensative mechanisms have been observed (no inverse correlation between the two species). The gut contents of the two species were quite different: A. lixula fed mainly on encrusting corallines, while P. lividus fed on non-encrusting macrophytes. Food limitation was detected for P. lividus, as a consequence of intra-specific competition. Our results highlight that in barren conditions a large trophic niche differentiation occurs, demonstrating that the two urchins play complementary and synergic roles in the maintenance of barrens in the Mediterranean

    Effects of arsenic exposure on the distribution of cholesterol and triglycerides over serum lipoprotein fractions.

    No full text
    <p>Dams were fasted for 6 hours on PN day 21 and pooled serum of 4 As (IU&PN) treated dams (open triangles) and 3 controls (black circles) was used for lipoprotein profiling by FPLC. Fractions were assayed for TG (top panel) and total cholesterol levels (bottom panel).</p
    corecore