20 research outputs found
Early Weight Bearing of Calcaneal Fractures Treated by Intraoperative 3D-Fluoroscopy and Locked-Screw Plate Fixation
Operative therapy of intraarticular fractures of the calcaneus is an established surgical standard. The aim is an accurate reduction of the fracture with reconstruction of Boehler’s angle, length, axis and subtalar joint surface. Intraoperative 3D-fluoroscopy with the Siremobil Iso-C 3D® mobile C-arm system is a valuable assistant for accurate reconstruction of these anatomical structures. Remaining incongruities can be recognized and corrected intraoperatively. The achieved reduction can be fixed by the advantages of an internal fixator (locked-screw plate interface). In the period of October 2002 until April 2007 we operated 136 patients with intraarticular fractures of the calcaneus by means of anatomical reduction, and internal plate fixator under intraoperative control of 3D-fluoroscopy. All patients were supplied with an orthesis after the operation which allowed weight bearing of 10 kg for 12 weeks for the patients operated between October 2002 and October 2004 (Group A). Transient local osteoporosis was observed in all X-Rays at follow-up after an average of 8,6 months. Therefore we changed our postoperative treatment plan for the patients operated between November 2004 and April 2007 (Group B). Weight bearing started with 20 KG after 6 weeks, was increased to 40 KG after 8 weeks and full weight bearing was allowed after 10 weeks for these patients. In no case a secondary dislocation of the fracture was seen. No bone graft was used. At follow up the average American Foot and Ankle Society Score (AOFAS) were 81 for Group_A, compared to 84 for Group B, treated with earlier weight bearing. Autologous bone graft was not necessary even if weight bearing was started after a period of six weeks postoperatively. The combination of 3D-fluoroscopy with locked internal fixation showed promising results. If the rate of patients developing subtalar arthrosis will decrease by this management will have to be shown in long term follow up
Nebulisation of synthetic lamellar lipids mitigates radiation-induced lung injury in a large animal model
Item originally deposited in University of Edinburgh, Edinburgh Research Explorer Repository at: https://www.research.ed.ac.uk/portal/en/publications/nebulisation-of-synthetic-lamellar-lipids-mitigates-radiationinduced-lung-injury-in-a-large-animal-model(ab917c99-7e7f-4fa1-8d1e-40511ca9abd3).htmlMethods to protect against radiation-induced lung injury (RILI) will facilitate the development of more effective radio-therapeutic protocols for lung cancer and may provide the means to protect the wider population in the event of a deliberate or accidental nuclear or radiological event. We hypothesised that supplementing lipid membranes through nebulization of synthetic lamellar lipids would mitigate RILI. Following pre-treatment with either nebulised lamellar lipids or saline, anaesthetised sheep were prescribed fractionated radiotherapy (30 Gray (Gy) total dose in five 6 Gy fractions at 3–4 days intervals) to a defined unilateral lung volume. Gross pathology in radio-exposed lung 37 days after the first radiation treatment was consistent between treatment groups and consisted of deep red congestion evident on the pleural surface and firmness on palpation. Consistent histopathological features in radio-exposed lung were subpleural, periarteriolar and peribronchial intra-alveolar oedema, alveolar fibrosis, interstitial pneumonia and type II pneumocyte hyperplasia. The synthetic lamellar lipids abrogated radiation-induced alveolar fibrosis and reduced alpha-smooth muscle actin (ASMA) expression in radio-exposed lung compared to saline treated sheep. Administration of synthetic lamellar lipids was also associated with an increased number of cells expressing dendritic cell-lysosomal associated membrane protein throughout the lung.This work was supported by Grant MRC/CIC3/025 awarded to D.C., J.L., J.M., G.M. & J.P. The authors wish to acknowledge the assistance of Dryden Animal Services in the conduct of this work, and the assistance of Dr Helen Brown in relation to experimental design and statistical analysis. The authors are grateful to Lamellar Biomedical Ltd., Strathclyde Business Park, Bellshill, Scotland, United Kingdom, for the supply of LAMELLASOME™ used in this research.8pubpubArticle no: 1331
