7 research outputs found

    Accelerated and Improved Quantification of Lymphocytic Choriomeningitis Virus (LCMV) Titers by Flow Cytometry

    Get PDF
    Lymphocytic choriomeningitis virus (LCMV), a natural murine pathogen, is a member of the Arenavirus family, may cause atypical meningitis in humans, and has been utilized extensively as a model pathogen for the study of virus-induced disease and immune responses. Historically, viral titers have been quantified by a standard plaque assay, but for non-cytopathic viruses including LCMV this requires lengthy incubation, so results cannot be obtained rapidly. Additionally, due to specific technical constraints of the plaque assay including the visual detection format, it has an element of subjectivity along with limited sensitivity. In this study, we describe the development of a FACS-based assay that utilizes detection of LCMV nucleoprotein (NP) expression in infected cells to determine viral titers, and that exhibits several advantages over the standard plaque assay. We show that the LCMV-NP FACS assay is an objective and reproducible detection method that requires smaller sample volumes, exhibits a ∼20-fold increase in sensitivity to and produces results three times faster than the plaque assay. Importantly, when applied to models of acute and chronic LCMV infection, the LCMV-NP FACS assay revealed the presence of infectious virus in samples that were determined to be negative by plaque assay. Therefore, this technique represents an accelerated, enhanced and objective alternative method for detection of infectious LCMV that is amenable to adaptation for other viral infections as well as high throughput diagnostic platforms

    CXCR5<sup>+</sup> follicular cytotoxic T cells control viral infection in B cell follicles

    Get PDF
    During unresolved infections, some viruses escape immunological control and establish a persistant reservoir in certain cell types, such as human immunodeficiency virus (HIV), which persists in follicular helper T cells (TFH cells), and Epstein-Barr virus (EBV), which persists in B cells. Here we identified a specialized group of cytotoxic T cells (TC cells) that expressed the chemokine receptor CXCR5, selectively entered B cell follicles and eradicated infected TFH cells and B cells. The differentiation of these cells, which we have called 'follicular cytotoxic T cells' (TFC cells), required the transcription factors Bcl6, E2A and TCF-1 but was inhibited by the transcriptional regulators Blimp1, Id2 and Id3. Blimp1 and E2A directly regulated Cxcr5 expression and, together with Bcl6 and TCF-1, formed a transcriptional circuit that guided TFC cell development. The identification of TFC cells has far-reaching implications for the development of strategies to control infections that target B cells and TFH cells and to treat B cell–derived malignancies

    Percutaneous Transluminal Angioplasty and Stent Placement for Subclavian Steal Syndrome With Concomitant Anterograde Flow in the Left Internal Mammary Artery Graft for Coronary Artery Bypass-Case Report-

    No full text

    Histoplasmosis

    No full text
    corecore