109 research outputs found
Radiation of Quantized Black Hole
The maximum entropy of a quantized surface is demonstrated to be proportional
to the surface area in the classical limit. The general structure of the
horizon spectrum and the value of the Barbero-Immirzi parameter are found. The
discrete spectrum of thermal radiation of a black hole fits naturally the Wien
profile. The natural widths of the lines are very small as compared to the
distances between them. The total intensity of the thermal radiation is
calculated.Comment: 11 pages; few comments and a reference added; one more reference and
a comment on it added; a note added that the natural widths of the lines are
very small as compared to the distances between the
Nonthermal radiation of rotating black holes
Nonthermal radiation of a Kerr black hole is considered as tunneling of
created particles through an effective Dirac gap. In the leading semiclassical
approximation this approach is applicable to bosons as well. Our semiclassical
results for photons and gravitons do not contradict those obtained previously.
For neutrinos the result of our accurate quantum mechanical calculation is
about two times larger than the previous one.Comment: 10 pages, 2 figures; 2 references added, few typos correcte
Quantized Black Holes, Their Spectrum and Radiation
Under quite natural general assumptions, the following results are obtained.
The maximum entropy of a quantized surface is demonstrated to be proportional
to the surface area in the classical limit. The general structure of the
horizon spectrum is found. The discrete spectrum of thermal radiation of a
black hole Under quite natural general assumptions, the following results are
obtained. The maximum entropy of a quantized surface is demonstrated to be
proportional to the surface area in the classical limit. The general structure
of the horizon spectrum is found. The discrete spectrum of thermal radiation of
a black hole fits the Wien profile. The natural widths of the lines are much
smaller than the distances between them. The total intensity of the thermal
radiation is estimated.
In the special case of loop quantum gravity, the value of the Barbero --
Immirzi parameter is found. Different values for this parameter, obtained under
additional assumption that the horizon is described by a U(1) Chern -- Simons
theory, are demonstrated to be in conflict with the firmly established
holographic bound.Comment: 15 pages, content of few talks given at conferences this summe
Parity nonconservation effects in the photodesintegration of polarized deuterons
P-odd correlations in the deuteron photodesintegration are considered. The
-meson exchange is not operative in the case of unpolarized deuterons. For
polarized deuterons a P-odd correlation due to the -meson exchange is
about . Short-distance P-odd contributions exceed essentially
than the contribution of the -meson exchange.Comment: 12 pages, Latex, 3 figure
Reduction of Aerosol Absorption in Beijing Since 2007 from MODIS and AERONET
An analysis of the time series of MODIS-based and AERONET aerosol records over Beijing reveals two distinct periods, before and after 2007. The MODIS data from both the Terra and Aqua satellites were processed with the new Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm. A comparison of MAIAC and AERONET AOT shows that whereas MAIAC consistently underestimated peak AOT values by 10-20% in the prior period, the bias mostly disappears after mid-2007. Independent analysis of the AERONET dataset reveals little or no change in the effective radii of the fine and coarse fractions and of the Angstrom exponent. At the same time, it shows an increasing trend in the single scattering albedo, by approx.0.02 in 9 years. As MAIAC was using the same aerosol model for the entire 2000-2010 period, the decrease in AOT bias after 2007 can be explained only by a corresponding decrease of aerosol absorption caused by a reduction in local black carbon emissions. The observed changes correlate in time with the Chinese government's broad measures to improve air quality in Beijing during preparations for the Summer Olympics of 2008
Computational Analysis and Prediction of the Binding Motif and Protein Interacting Partners of the Abl SH3 Domain
Protein-protein interactions, particularly weak and transient ones, are often mediated by peptide recognition domains, such as Src Homology 2 and 3 (SH2 and SH3) domains, which bind to specific sequence and structural motifs. It is important but challenging to determine the binding specificity of these domains accurately and to predict their physiological interacting partners. In this study, the interactions between 35 peptide ligands (15 binders and 20 non-binders) and the Abl SH3 domain were analyzed using molecular dynamics simulation and the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. The calculated binding free energies correlated well with the rank order of the binding peptides and clearly distinguished binders from non-binders. Free energy component analysis revealed that the van der Waals interactions dictate the binding strength of peptides, whereas the binding specificity is determined by the electrostatic interaction and the polar contribution of desolvation. The binding motif of the Abl SH3 domain was then determined by a virtual mutagenesis method, which mutates the residue at each position of the template peptide relative to all other 19 amino acids and calculates the binding free energy difference between the template and the mutated peptides using the Molecular Mechanics/Poisson-Boltzmann Solvent Area method. A single position mutation free energy profile was thus established and used as a scoring matrix to search peptides recognized by the Abl SH3 domain in the human genome. Our approach successfully picked ten out of 13 experimentally determined binding partners of the Abl SH3 domain among the top 600 candidates from the 218,540 decapeptides with the PXXP motif in the SWISS-PROT database. We expect that this physical-principle based method can be applied to other protein domains as well
ProteinDBS v2.0: a web server for global and local protein structure search
ProteinDBS v2.0 is a web server designed for efficient and accurate comparisons and searches of structurally similar proteins from a large-scale database. It provides two comparison methods, global-to-global and local-to-local, to facilitate the searches of protein structures or substructures. ProteinDBS v2.0 applies advanced feature extraction algorithms and scalable indexing techniques to achieve a high-running speed while preserving reasonably high precision of structural comparison. The experimental results show that our system is able to return results of global comparisons in seconds from a complete Protein Data Bank (PDB) database of 152 959 protein chains and that it takes much less time to complete local comparisons from a non-redundant database of 3276 proteins than other accurate comparison methods. ProteinDBS v2.0 supports query by PDB protein ID and by new structures uploaded by users. To our knowledge, this is the only search engine that can simultaneously support global and local comparisons. ProteinDBS v2.0 is a useful tool to investigate functional or evolutional relationships among proteins. Moreover, the common substructures identified by local comparison can be potentially used to assist the human curation process in discovering new domains or folds from the ever-growing protein structure databases. The system is hosted at http://ProteinDBS.rnet.missouri.edu
Atmospheric correction of DSCOVR EPIC: version 2 MAIAC algorithm
The Earth Polychromatic Imaging Camera (EPIC) onboard the Deep Space Climate Observatory (DSCOVR) provides multispectral images of the sunlit disk of Earth since 2015 from the L1 orbit, approximately 1.5 million km from Earth toward the Sun. The NASA’s Multi-Angle Implementation of Atmospheric Correction (MAIAC) algorithm has been adapted for DSCOVR/EPIC data providing operational processing since 2018. Here, we describe the latest version 2 (v2) MAIAC EPIC algorithm over land that features improved aerosol retrieval with updated regional aerosol models and new atmospheric correction scheme based on the ancillary bidirectional reflectance distribution function (BRDF) model of the Earth from MAIAC MODIS. The global validation of MAIAC EPIC aerosol optical depth (AOD) with AERONET measurements shows a significant improvement over v1 and the mean bias error MBE = 0.046, RMSE = 0.159, and R = 0.77. Over 66.7% of EPIC AOD retrievals agree with the AERONET AOD to within ± (0.1 + 0.1AOD). We also analyze the role of surface anisotropy, particularly important for the backscattering view geometry of EPIC, on the result of atmospheric correction. The retrieved BRDF-based bidirectional reflectance factors (BRF) are found higher than the Lambertian reflectance by 8–15% at 443 nm and 1–2% at 780 nm for EPIC observations near the local noon. Due to higher uncertainties, the atmospheric correction at UV wavelengths of 340, 388 nm is currently performed using a Lambertian approximation.Published versio
DOMMINO: a database of macromolecular interactions
With the growing number of experimentally resolved structures of macromolecular complexes, it becomes clear that the interactions that involve protein structures are mediated not only by the protein domains, but also by various non-structured regions, such as interdomain linkers, or terminal sequences. Here, we present DOMMINO (http://dommino.org), a comprehensive database of macromolecular interactions that includes the interactions between protein domains, interdomain linkers, N- and C-terminal regions and protein peptides. The database complements SCOP domain annotations with domain predictions by SUPERFAMILY and is automatically updated every week. The database interface is designed to provide the user with a three-stage pipeline to study macromolecular interactions: (i) a flexible search that can include a PDB ID, type of interaction, SCOP family of interacting proteins, organism name, interaction keyword and a minimal threshold on the number of contact pairs; (ii) visualization of subunit interaction network, where the user can investigate the types of interactions within a macromolecular assembly; and (iii) visualization of an interface structure between any pair of the interacting subunits, where the user can highlight several different types of residues within the interfaces as well as study the structure of the corresponding binary complex of subunits
- …
