1,194 research outputs found

    Magnetospheric considerations for solar system ice state

    Get PDF
    The current lattice configuration of the water ice on the surfaces of the inner satellites of Jupiter and Saturn is likely shaped by many factors. But laboratory experiments have found that energetic proton irradiation can cause a transition in the structure of pure water ice from crystalline to amorphous. It is not known to what extent this process is competitive with other processes in solar system contexts. For example, surface regions that are rich in water ice may be too warm for this effect to be important, even if the energetic proton bombardment rate is very high. In this paper, we make predictions, based on particle flux levels and other considerations, about where in the magnetospheres of Jupiter and Saturn the ∌MeV proton irradiation mechanism should be most relevant. Our results support the conclusions of Hansen and McCord (2004), who related relative level of radiation on the three outer Galilean satellites to the amorphous ice content within the top 1 mm of surface. We argue here that if magnetospheric effects are considered more carefully, the correlation is even more compelling. Crystalline ice is by far the dominant ice state detected on the inner Saturnian satellites and, as we show here, the flux of bombarding energetic protons onto these bodies is much smaller than at the inner Jovian satellites. Therefore, the ice on the Saturnian satellites also corroborates the correlation

    Stable crystalline lattices in two-dimensional binary mixtures of dipolar particles

    Full text link
    The phase diagram of binary mixtures of particles interacting via a pair potential of parallel dipoles is computed at zero temperature as a function of composition and the ratio of their magnetic susceptibilities. Using lattice sums, a rich variety of different stable crystalline structures is identified including AmBnA_mB_n structures. [AA (B)(B) particles correspond to large (small) dipolar moments.] Their elementary cells consist of triangular, square, rectangular or rhombic lattices of the AA particles with a basis comprising various structures of AA and BB particles. For small (dipolar) asymmetry there are intermediate AB2AB_2 and A2BA_2B crystals besides the pure AA and BB triangular crystals. These structures are detectable in experiments on granular and colloidal matter.Comment: 6 pages - 2 figs - phase diagram update

    Automated computer-based detection of encounter behaviours in groups of honeybees.

    Get PDF
    Honeybees form societies in which thousands of members integrate their behaviours to act as a single functional unit. We have little knowledge on how the collaborative features are regulated by workers' activities because we lack methods that enable collection of simultaneous and continuous behavioural information for each worker bee. In this study, we introduce the Bee Behavioral Annotation System (BBAS), which enables the automated detection of bees' behaviours in small observation hives. Continuous information on position and orientation were obtained by marking worker bees with 2D barcodes in a small observation hive. We computed behavioural and social features from the tracking information to train a behaviour classifier for encounter behaviours (interaction of workers via antennation) using a machine learning-based system. The classifier correctly detected 93% of the encounter behaviours in a group of bees, whereas 13% of the falsely classified behaviours were unrelated to encounter behaviours. The possibility of building accurate classifiers for automatically annotating behaviours may allow for the examination of individual behaviours of worker bees in the social environments of small observation hives. We envisage that BBAS will be a powerful tool for detecting the effects of experimental manipulation of social attributes and sub-lethal effects of pesticides on behaviour

    Global versus local billiard level dynamics: The limits of universality

    Full text link
    Level dynamics measurements have been performed in a Sinai microwave billiard as a function of a single length, as well as in rectangular billiards with randomly distributed disks as a function of the position of one disk. In the first case the field distribution is changed globally, and velocity distributions and autocorrelation functions are well described by universal functions derived by Simons and Altshuler. In the second case the field distribution is changed locally. Here another type of universal correlations is observed. It can be derived under the assumption that chaotic wave functions may be described by a random superposition of plane waves

    Energetic charged particle fluxes relevant to Ganymede's polar region

    Get PDF
    The JEDI instrument made measurements of energetic charged particles near Ganymede during a close encounter with that moon. Here we find ion flux levels are similar close to Ganymede itself but outside its magnetosphere and on near wake and open field lines. But energetic electron flux levels are more than a factor of 2 lower on polar and near-wake field lines than on nearby Jovian field lines at all energies reported here. Flux levels are relevant to the weathering of the surface, particularly processes that affect the distribution of ice, since surface brightness has been linked to the open-closed field line boundary. For this reason, we estimate the sputtering rates expected in the polar regions due to energetic heavy ions. Other rates, such as those related to radiolysis by plasma and particles that can reach the surface, need to be added to complete the picture of charged particle weathering

    Robust Signal Processing in Living Cells

    Get PDF
    Cellular signaling networks have evolved an astonishing ability to function reliably and with high fidelity in uncertain environments. A crucial prerequisite for the high precision exhibited by many signaling circuits is their ability to keep the concentrations of active signaling compounds within tightly defined bounds, despite strong stochastic fluctuations in copy numbers and other detrimental influences. Based on a simple mathematical formalism, we identify topological organizing principles that facilitate such robust control of intracellular concentrations in the face of multifarious perturbations. Our framework allows us to judge whether a multiple-input-multiple-output reaction network is robust against large perturbations of network parameters and enables the predictive design of perfectly robust synthetic network architectures. Utilizing the Escherichia coli chemotaxis pathway as a hallmark example, we provide experimental evidence that our framework indeed allows us to unravel the topological organization of robust signaling. We demonstrate that the specific organization of the pathway allows the system to maintain global concentration robustness of the diffusible response regulator CheY with respect to several dominant perturbations. Our framework provides a counterpoint to the hypothesis that cellular function relies on an extensive machinery to fine-tune or control intracellular parameters. Rather, we suggest that for a large class of perturbations, there exists an appropriate topology that renders the network output invariant to the respective perturbations

    The international synchronisation of business cycles: the role of animal spirits

    Get PDF
    Business cycles among industrial countries are highly correlated. We develop a two-country behavioral macroeconomic model where the synchronization of the business cycle is produced endogenously. The main channel of synchronization occurs through a propagation of “animal spirits”, i.e. waves of optimism and pessimism that become correlated internationally. We find that this propagation occurs with relatively low levels of trade integration. We do not need a correlation of exogenous shocks to generate synchronization. We also empirically test the main predictions of the model
    • 

    corecore