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Automated computer-based 
detection of encounter behaviours 
in groups of honeybees
Christina Blut1, Alessandro Crespi2, Danielle Mersch3, Laurent Keller4, Linlin Zhao5,  
Markus Kollmann5, Benjamin Schellscheidt6, Carsten Fülber6 & Martin Beye1

Honeybees form societies in which thousands of members integrate their behaviours to act as a 
single functional unit. We have little knowledge on how the collaborative features are regulated by 
workers’ activities because we lack methods that enable collection of simultaneous and continuous 
behavioural information for each worker bee. In this study, we introduce the Bee Behavioral Annotation 
System (BBAS), which enables the automated detection of bees’ behaviours in small observation 
hives. Continuous information on position and orientation were obtained by marking worker bees 
with 2D barcodes in a small observation hive. We computed behavioural and social features from the 
tracking information to train a behaviour classifier for encounter behaviours (interaction of workers 
via antennation) using a machine learning-based system. The classifier correctly detected 93% of 
the encounter behaviours in a group of bees, whereas 13% of the falsely classified behaviours were 
unrelated to encounter behaviours. The possibility of building accurate classifiers for automatically 
annotating behaviours may allow for the examination of individual behaviours of worker bees in 
the social environments of small observation hives. We envisage that BBAS will be a powerful tool 
for detecting the effects of experimental manipulation of social attributes and sub-lethal effects of 
pesticides on behaviour.

Honeybees, like other eusocial insects, form societies in which their members integrate their behaviours to form a 
single functional unit (often described as ‘superorganisms’)1. In honeybee colonies, for example, the brood is col-
lectively reared by the worker bees under constant temperature conditions in worker-made and well-structured 
wax combs2. We still have little knowledge on how the collaborative features are regulated within the colony by 
single workers’ task engagements, worker-worker interactions and environmental cues.

A honeybee may engage in many behavioural tasks, for example, cell cleaning, brood feeding, comb building, 
pollen and nectar storing, and foraging3. The many in-hive tasks are usually performed within the first three weeks 
of their life, whereas foraging tasks are performed later3. Individual task engagements are flexible and are adapted 
according to the colony’s needs4,5. Differences in individuals’ internal response thresholds for task-specific stim-
uli (response threshold model)6–8, actively seeking for tasks (foraging for work model)9, repeatedly performing 
the same task when being successful at it (self-reinforcement models)8,10 and information transferred by social 
partners through direct contact11 may play an important role in the organisation of task engagements within the 
colony.

Gaining continuous behavioural information on each single worker, their direct contacts (encounters) to 
other worker bees and their interactions with the local environment would facilitate the further characterization 
of the underlying mechanisms of colony organization. However, we currently lack methods that enable the collec-
tion of simultaneous and continuous behavioural information for each individual worker bee in the environment 
of a colony12. In current methods, behaviours are manually detected by an observer either from video recordings 
of small observation hives or from direct observations3,13–15. These manually detected behaviours represent only 
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a fraction of the behaviours that the many worker bees can display in a colony, especially when the behaviour is 
frequently performed, for example, in the case of encounter behaviours.

In honeybees, encounter behaviours between workers are characterized by the following: the two worker bees 
face each other head to head and their moving antennae are repeatedly in contact. Encounter behaviours sum-
marize different worker-worker interaction behaviours that display constant antennal contact and can be further 
grouped into the following behaviours: (i) antennation behaviour, which is required to initialize and maintain a 
contact16, whereby the antennae of two worker bees are in constant contact but no other features of the following 
behaviours are displayed; (ii) begging behaviour, in which a worker bee begs for food from another nestmate;16,17 
(iii) offering behaviour, in which a worker bee offers food to another nestmate;17 and, (iv) trophallaxis behaviour, 
in which nectar from the crop is exchanged between two bees18,19.

Worker bees may perform begging behaviour to gain information about the quality and source of nectar 
offered by the incoming forager bees18,20–22. Incoming forager bees perform offering behaviour to unload the col-
lected nectar to a recipient in-hive worker bee via trophallaxis20,23–25. Returning foragers presenting high-quality 
nectar show increased offering behaviour as well as increased dancing behaviour26. They more often find a recipi-
ent bee and will more often return with nectar to the colony. Effects of different nectar qualities on worker-worker 
interaction establish a control mechanism for the workers’ foraging engagement, performance and the influx of 
high-quality nectar27. Despite their role in regulating workers’ foraging engagement and performance23,28, we 
have little knowledge on other possible roles that these encounter behaviours may have in task engagements and 
colony organization.

In this study, we introduce the Bee Behavioral Annotation System (BBAS), which enables the automated clas-
sification of worker-worker encounters within a group of honeybees. We obtained continuous information on 
workers’ positions and orientations over time by simultaneously tracking 100 bees tagged with a 2D barcode 
by adapting a tracking device that was developed for ants29. From this tracking information, behavioural and 
social features were computed, and a behaviour classifier was trained based on machine learning using the Janelia 
Automatic Animal Behavior Annotator (JAABA) program30. Our study demonstrates that we can automatically 
and accurately classify encounter behaviours within a group of bees. This system has the prospect of automatically 
obtaining quantitative and continuous behavioural information on hundreds of bees at once in small colonies.

Results
Automatic classification of encounter behaviours in a group of worker bees. To automatically 
classify worker behaviours in a small observation hive, we developed the BBAS. We obtained tracking infor-
mation from individual worker bees in a small group and computed behavioural features (per-frame features), 
which were utilized to classify behaviours. Per-frame features represented parameters calculated from the track-
ing information that provided information on the bees’ behavioural properties in each frame. Such properties 
included, for example, a bee’s speed or orientation towards a nestmate (see Kabra et al.30 for a detailed listing of 
per-frame features). We applied the per-frame features to manually labelled behaviour classes to train a machine 
learning-based system and thus generate an automatic behaviour classifier.

First, we adapted a tracking device developed for ants29 to obtain information on the position and orientation 
of individually tagged bees at a rate of four frames per second. In our setting, we tracked 100 newly emerged 
worker bees for two days. Bees were individually tagged with 2D barcodes from the AprilTags library31 printed 
on 2 × 2 mm tags and housed in a small observation hive on a single comb providing food (Fig. 1a–c). We chose a 
rate of four frames per second to ensure that we obtained sufficient information on the bees’ position and orienta-
tion for subsequent use in automatic behaviour classification. To test whether the chosen rate captured sufficient 
information we determined the average change in posiotion and orientation of bees (see Supplementary infor-
mation online). On average, bees’ positions changed by 0.9 mm (SD ± 0.9 mm) from one frame to another, which 
corresponds to ~0.06% of an Apis mellifera worker size. Bees’ average change in orientation from one frame to 
another was 6° (SD ± 4°). These small changes in position and orientation suggest that we can capture sufficiently 
detailed information on the bees’ movements with the chosen rate. The AprilTag system was chosen because it is 
an actively maintained open source project and provides a robust system to minimize inter-tag confusion. It also 
has better performance on images taken under non-uniform lighting conditions as compared to several other 
similar systems31.

The results of the detection rate and positional accuracy of the tracking device of immobile tags glued to a 
comb and tags attached to moving and resting worker bees are summarized in Table 1. On average, resting bees 
were detected in 98.2% of the frames, whereas moving bees were detected in 90.8% of the frames. The orientation 
accuracy of immobile tags glued to a comb was 1.5° and the positional accuracy was 0.04 mm. The high detection 
rate and positional accuracy suggest that we can obtain a considerable amount of detailed information on the 
movement of each single worker in a group of bees.

Second, to generate an automatic behaviour classifier, we computed per-frame features from the tracking 
information using the JAABADetect program30. Computing the per-frame features for the tracking information 
on 100 worker bees required a high-performance computing cluster. We used the social per-frame features to 
train a classifier for honeybee encounter behaviours30. The social per-frame features are a set of per-frame features 
providing information on an individual’s state in each frame in relation to its nearest nestmates. For example, the 
distance, orientation and speed towards another worker may be described by these features (see Kabra et al.30 for 
a detailed listing of social per-frame features).

Third, we determined whether we could automatically classify encounter behaviours between workers using 
an automatic behaviour classifier generated with the JAABA program. The automatic behaviour classifier was 
expected to classify the four different behaviours - antennation, begging, offering and trophallaxis - as a single 
class, which have the behavioural features of head to head orientation and antennal contact of two worker bees 
in common (Fig. 1d). To train the automatic behaviour classifier, we manually labelled 76 encounter behaviours 
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and 77 non-encounter behaviours from 105 minutes of video recording and corresponding tracking information 
of the 100 tracked bees. We only labelled encounter behaviours of which we were highly confident that encounter 
behaviour was truly displayed. The 76 encounter behaviours (EBs) comprised a sample of 28 antennation, 8 beg-
ging, 6 offering and 34 trophallaxis behaviours (see Supplementary Videos V1-V4 online for examples of the four 
encounter behaviours). The non-encounter behaviours (NEBs) represented a sample of 46 sitting, 20 walking, 7 
self-grooming, 1 social grooming and 3 sitting with subsequent walking behaviours. We trained the classifier by 
entering the 76 EBs and 77 NEBs (training set) bit by bit into the JAABA program in five training rounds until we 
observed no further improvement in the cross-validation estimates (see Supplementary information online for 
details on cross-validation). Cross-validation estimates were obtained by randomly splitting the EBs and NEBs 
from the training set into testing and training subsets. The training subset was used to train the classifier while 
the testing subset was used to subsequently estimate the classifier’s error rate on classifications30. Table 2 presents 
the final cross-validation estimates from 10 cross-validation rounds for our trained ‘encounter classifier’. The esti-
mates represent the percentage of frames automatically classified as EB* and NEB* by the ‘encounter classifier’ 
(asterisks indicate automatically classified behaviours; see Supplementary information online for details on cal-
culation of estimates). Of the EB frames, 77.3% were correctly classified by our ‘encounter classifier’ (SD ± 1.3%, 
Table 2), whereas 73.7% of the NEB frames were correctly classified (SD ± 1.2%, Table 2). The false positive rate 
was 26.3% (NEB frames falsely classified as EBs*), whereas the false negative rate was 22.7% (EB frames falsely 
classified as NEBs*; Table 2).

Next, we examined whether our classifier was able to correctly classify all 76 manually labelled EBs from 
our training set. Since the training set included the different behaviour classes - antennation, begging, offering 
and trophallaxis - we examined whether the classifier could correctly classify these four different behaviours as 
encounter behaviour. We determined the classification rate and observed that all manually labelled encounter 
behaviours of the training set were correctly detected by our classifier (training set in Table 3; Supplementary 
Table S1).

Figure 1. Setup of the tracking device. (a) The tracking device consisted of a high-resolution camera (Cam), an 
infrared lighting system (LS) and the observation hive holding one “Deutsch Normal” comb (OH). The entire 
device was placed under a cardboard box in a laboratory. (b) Examples of 2D barcodes from the AprilTags 
library. (c) Bee marked with a tag bearing a 2D barcode. (d) Encounter behaviour between two worker bees 
defined by the head to head orientation and the antennal contact of the interacting bees. This specific encounter 
shown is trophallaxis.

No. of 
tracked tags

No. of frames analysed 
(sequence duration)(3)

Detection 
rate(4) (%)

x/y position accuracy(5) 
(mm ± SD)

Orientation accuracy(5) 
(degrees ± SD)

Tags glued to 
a comb immobile 100 1200 (5 min) 99.9 0.04(6) ± 0.03 1.5 ± 0.8

Tags glued to 
a bee

resting(1) 10 240 (1 min) 98.2 n.d.(7) n.d.(7)

moving(2) 30 240 (1 min) 90.8 n.d.(7) n.d.(7)

Table 1. Detection rate and positional accuracy of the tracking device. (1)Bee sits in one position without 
moving for ≥ 5 seconds. (2)Bee walks across the comb without interacting with other bees, inspecting cells or 
performing any other task. (3)Duration of the tracking. (4)The percentage of frames in which tags were detected. 
(5)Accuracy of the tracking device for the detected x/y centre position and the orientation. (6)i.e., ~0.003% of an 
Apis mellifera worker size. (7)Not determined (n.d.) because changes could result from the bees’ behaviours.
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We then determined the accuracy of our ‘encounter classifier’ by comparing manual annotations and auto-
matic classifications of behaviours that were not included in our initial training set. We manually annotated 43 
encounter behaviours comprising 4 trophallaxis, 8 begging, 12 offering and 19 antennation behaviours (testing 
set; see Supplementary Table S1). Our ‘encounter classifier’ detected 93% of the manually annotated encoun-
ter behaviours in this testing set. The false negative rate was 7%, whereas 28% of the automatically detected 
behaviours were falsely classified as EBs* (testing set in Table 3; Supplementary Table S1). We re-examined the 
falsely classified EBs* and found that 15% of the 28% falsely classified EBs* displayed similar features to those of 
encounter behaviours, i.e. head to head orientation and proximity of two bees. However, these falsely classified 
EBs* collectively lacked antennal contact. Of the behaviours falsely classified as encounters, 13% were unrelated 
to encounter behaviour, i.e. displayed no features characterizing encounter behaviours. The results on the high 
classification rates suggest that the BBAS can be used to automatically and accurately annotate encounter behav-
iours in groups of honeybees.

Classification of trophallaxis behaviour based on the duration of the encounter behaviour. We 
demonstrated that we could automatically classify the different encounter behaviours, antennation, begging, 
offering and trophallaxis, as a single behavioural class with our ‘encounter classifier’. Next, we considered whether 
we could use the duration of the different encounter behaviours to distinguish these from each other. In 105 min-
utes of the 22 hours of video recording, we measured the frequency and duration of antennation, begging, offering 
and trophallaxis behaviours in the group of 100 worker bees.

We manually detected 658 encounter behaviours from which 57% were antennation behaviours, 26% were 
offering behaviours, 9% were begging behaviours and 8% trophallaxis behaviours (Table 4; Supplementary 
Videos V1-V4 online). The median duration of the trophallaxis behaviours was 8 seconds (75% percentile: 13 sec-
onds; range of duration: 5–30.5 seconds; Table 4; Fig. 2a). The median duration of antennation, offering and 
begging behaviours was much shorter, ranging from 1 to 2 seconds with a considerable overlap in the 75% percen-
tile (range of durations: antennation: 0.25–9.25 seconds, offering: 0.25–4.5 seconds, begging: 0.75–6.75 seconds; 
Table 4; Fig. 2b-d). There was a significant difference between the duration of the four different encounter behav-
iours (One Way ANOVA on Ranks: N = 658, α = 0.05, H = 175, d.f. = 3, P =  < 0.001). Post hoc tests showed that 
pairwise comparisons were significantly different except for begging vs. antennation behaviours (Dunn’s Method, 
α = 0.05: trophallaxis vs. offering: N = 222, Q = 13, P < 0.001; trophallaxis vs. antennation: N = 427, Q = 10.7, 
P < 0.001; trophallaxis vs. begging: N = 109, Q = 6.7, P < 0.001; begging vs. offering: N = 231, Q = 5.3, P < 0.001; 
antennation vs. offering: N = 549, Q = 5.2, P < 0.001; begging vs. antennation: N = 436, Q = 2.3, P = 0.138). This 
result suggests that the duration of encounter behaviours could be utilized to distinguish the different encounter 
behaviours from each other.

Next, we tested whether encounter behaviours could be accurately classified as antennation, begging, offering 
or trophallaxis based solely on their duration. Therefore, we analysed the ranges of duration of the 658 encounters 
from the four behaviour classes to determine whether duration thresholds could be used as classifier for the different 

Automatically detected by the ‘encounter classifier’

Encounter (EB*)(6) 
(±SD) (%)(2)

Non-encounter (NEB*)(6) 
(±SD) (%)(2)

Manually annotated(1)
Encounter (EB) 77.3 (±1.3)(3) 22.7 (±1.3)(5)

Non-encounter (NEB) 26.3 (±1.3)(4) 73.7 (±1.2)(3)

Table 2. The accuracy of the trained ‘encounter classifier’ estimated through cross-validation on the labelled 
frames for EBs and NEBs. (1)The manually labelled high-confidence behaviours (EBs and NEBs) used to train 
the classifier. (2)Mean estimates with standard deviation (SD) of the 10 rounds of cross-validation. Estimate 
values are given as percentage of frames correctly or falsely classified as EBs or NEBs using the classifier. 
(3)Frames correctly classified as EB or NEB (true positives). (4)NEB frames falsely classified as EB* (false 
positives). (5)EB frames falsely classified as NEB* (false negatives). (6)Asterisks indicate automatically classified 
behaviours.

Automatically detected by the 
‘encounter classifier’

Encounter 
(EB*) (%)

Non-encounter 
(NEB*) (%)

Training set(1)
Encounter (EB) 100 0

Non-encounter (NEB) 0 100

Testing set(2)
Encounter (EB) 93 7

Non-encounter (NEB) 28(3) n.d.(4)

Table 3. Comparison of manually annotated behaviours (EBs and NEBs) and automatically classified 
behaviours (EBs* and NEBs*). (1)The manually labelled high-confidence behaviours (EBs and NEBs) used to 
train the classifier (2)Manually annotated behaviours not used to train the classifier (3)Automatically detected 
behaviours falsely classified as EB* by the ‘encounter classifier’ (4)not determined (n.d.) because we did not 
manually annotate NEBs for the testing set and thus could not determine the automatic classification rate.
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encounter behaviours. Hereby, we attempted to find thresholds above which behaviours could be reliably classi-
fied as one of the four behaviour classes. We observed that duration thresholds could not be utilized as classifiers 
for begging, offering and antennation behaviours since their ranges of duration overlapped too strongly (Table 4; 
Fig. 2). When considering only behaviours with duration of 5 and more seconds, we observed that all trophallaxis 
behaviours could be correctly classified (100%; Table 5). Non-trophallaxis behaviours (i.e. begging and antennation 
behaviours), however, were falsely classified as trophallaxis behaviours with a false positive rate of 8% (Table 5).

We then tested whether trophallaxis behaviours could be automatically classified based on their duration. We 
applied the duration threshold of ≥ 5 seconds to the automatically classified EBs* from the testing set comprising 
43 encounter behaviours. We observed that 100% of the trophallaxis behaviours were automatically classified 
(Table 5). However, 28% of the detected behaviours were falsely classified as trophallaxis (false positive rate; 
Table 5). These classification rates suggest that we can automatically classify the vast majority of trophallaxis 
behaviours in a group of worker honeybees using our ‘encounter classifier’ together with the duration threshold 
of ≥5 seconds.

Encounter 
behaviour

No. of 
encounters

Relative 
proportion (%)

Min. duration 
(sec)

Max. duration 
(sec)

Median 
(sec)

75% percentile 
(sec)

Antennation 377 57 0.25 9.25 1.8 2.5

Offering 172 26 0.25 4.5 1 1.9

Begging 59 9 0.75 6.75 2 3

Trophallaxis 50 8 5 30.5 8.4 12.9

Table 4. Frequency and duration of the different manually detected encounter behaviours.

Figure 2. Number of encounter behaviours observed for the different duration of encounter behaviours from 
the four behaviour classes. (a) Trophallaxis, (b) Begging, (c) Offering, (d) Antennation.
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Discussion
We introduced the BBAS, a system that can automatically classify stereotypical behaviours of individual workers 
in a group of honeybees. Our results show that the BBAS can be reliably used to automatically detect encounter 
behaviours.

Current behavioural observation methods usually require the manual detection of behaviours by an 
observer12. Manual detection limits the number of observable behaviours, especially when the behaviour is fre-
quently displayed by the many worker bees in a colony, as is the case for encounter behaviours. In this study, we 
accurately classified encounter behaviours between worker bees using automatic classification. Of the encounter 
behaviours that were manually annotated, 93% were accurately detected. Even though our classifier may not 
detect 7% of the encounter behaviours, the large number of behaviours of the many worker bees that can be detect 
over multiple days of observation produces a reliable test sensitivity. This statistical power will support the identi-
fication of even tiny differences between internal physiological states or the effects of experimental manipulation. 
According to the manual annotations, our classifier falsely classified other behaviours as encounter behaviours. 
Of these false detections, 13% had no similarity to encounter behaviours, whereas 15% had a close similarity to 
encounter behaviours, possibly suggesting that our classifier can detect a broader spectrum of encounter and 
encounter-related behaviours than can be manually annotated. These borderline cases may have a similar biolog-
ical function and require further investigation.

In this study, the duration of the four different classes of encounter behaviours – trophallaxis, begging, offering 
and antennation - was obtained from 100 same-aged bees kept in a one-frame observation hive without a queen 
and brood. Our results showed that trophallaxis behaviours lasted between 5 and 30.5 seconds. The duration of 
offering and begging behaviours ranged from 0.25 to 6.75 seconds while antennation lasted 0.25 to 9.25 seconds. 
These measurements correspond to previous reports on the duration of trophallaxis, begging and offering behav-
iour that were obtained under more natural conditions (queenright colonies in one - or two-frame observation 
hives17,19,26). Trophallaxis behaviours of different aged worker bees in these small queenright colonies lasted 4 
to 30 seconds while begging and offering lasted less than 0.5 to 10 seconds17,19,26. This constancy under different 
conditions suggests that duration can possibly be used as a predictive parameter to distinguish among the behav-
ioural classes of encounters.

Our survey of manually annotated encounter behaviours suggests that a duration threshold of ≥ 5 seconds 
for an encounter behaviour can be used to accurately separate trophallaxis behaviour from the other encounter 
behaviours (begging, offering and antennation). When we applied our ‘encounter classifier’ together with the 
duration threshold, we were able to classify 100% of the manually annotated trophallaxis behaviours. However, 
the false positive rate was relatively high (28%), suggesting that we may need further adjustments of the behaviour 
duration parameter to reduce false classifications.

It has been proposed that encounter behaviours and the transmission of food are ways for worker bees to 
gather information about their colony’s state and thus can adjust their behaviours according to the colony’s 
needs32–35. So far, we have detailed knowledge on the role of trophallaxis, begging and offering behaviours 
between incoming foragers and worker bees inside the colony in accessing information about the quality and 
source of nectar and the honey stores of the colony. Foraging worker bees usually unload the nectar from the 
honey crop to the in-hive worker bees via trophallaxis18,23,36. The recipient worker bees store the nectar within 
the wax cells or further reduce the water content. Offering behaviour is performed by the returning nectar forag-
ers, which are willing to unload their crop contents to a recipient worker bee17. Inside the nest, worker bees beg 
incoming forager bees to receive nectar17,22,23,37. The rate of begging behaviour is affected by the colony’s state and 
the amount of stored honey in the colony38. Antennation behaviour is essential in making and maintaining the 
contact between encountering bees16,20. We envisage that with more classifiers trained for other behaviours, we 
can further examine the possible effects of encounter behaviours on subsequent task engagement.

For training the classifier and for measuring the accuracy of detection, we used 100 tagged worker bees in this 
study. However, with the current setup the BBAS can track up to 1000 worker bees on a brood comb in a small 
observation hive (preliminary data). It can be further scaled up to over 2000 worker bees by adding an additional 
camera, lighting system and cluster of five computers. Hence, we suggest that the BBAS will enhance our ability 
to gather knowledge on worker bees’ individual and collective behaviours. With more classifiers trained to detect 

Manually classified by duration among the 
658 manually detected behaviours(1)

Automatically classified by duration among the 
EBs* from the testing set(2)

Trophallaxis (%)(3) Non-trophallaxis (%)(3) Trophallaxis* (%)(4) Non-trophallaxis* (%)(4)

Trophallaxis(5) 100 0 100 0

Non-trophallaxis(5) 8 92 28 72

Table 5. The classification of trophallaxis behaviours of manually detected and automatically detected 
encounter behaviours using the duration threshold of ≥ 5 seconds. (1)We manually classified trophallaxis 
behaviours from the 658 manually detected encounter behaviours using the duration threshold of ≥ 5 seconds. 
(2)We applied the ‘encounter classifier’ with the duration threshold of ≥ 5 seconds to the 43 manually annotated 
encounter behaviours not used for training. (3)Percentage of the manually detected trophallaxis and non-
trophallaxis behaviours that were manually classified as trophallaxis using the duration threshold of ≥ 5 seconds. 
(4)Percentage of the manually annotated trophallaxis and non-trophallaxis behaviours from the testing set that 
were automatically classified as trophallaxis* and non-trophallaxis* (asterisks indicate automatic classification) 
using the duration threshold of ≥ 5 seconds. (5)Trophallaxis and non-trophallaxis behaviours that were manually 
annotated by the observer.
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different behaviours in honeybees, the BBAS can be used to examine single-worker behavioural phenotypes and 
worker-worker interactions within small observation hives. We envisage that the BBAS will be a powerful tool 
to detect the experimental effects of genetic and physiological manipulations on single workers39,40. Additionally, 
we propose that the BBAS can be an accurate method for measuring the sub-lethal effects of pesticides on behav-
iour41. The key to understanding the effects of pesticides on honeybee colonies is gaining knowledge on how 
these influence individual behaviour. With the BBAS we will be able to analyse the effects of pesticides on indi-
vidual behaviour because we can continuously and simultaneously quantify the in-hive behaviours of hundreds 
of worker bees under standardized conditions with computer-based classifiers. For encounter behaviours, for 
example, we can analyse the effects of pesticides on the duration of encounters or their quantity.

In conclusion, we foresee that the BBAS will be beneficial in various research areas for honeybee researchers 
who need to obtain detailed behavioural information of hundreds of individual bees.

Methods
Tracking device and procedure. Video recordings of worker bees on a comb and tracking information 
were obtained with a tracking device that was developed for ants by Mersch et al.29 and modified for tracking 
honeybees (see Supplementary information online). The honeybee tracking device consisted of a monochrome 
high-resolution camera, a cluster of five desktop computers, an infrared lighting system and an observation hive 
holding a single “Deutsch Normal” comb (Fig. 1a). The infrared light was provided in flashes synchronized with 
the images taken every quarter second (4 frames per second) by the camera. To omit daylight exposure, both the 
observation hive and the camera stood in a laboratory covered by a cardboard box that was lined with infrared-re-
flecting foil, which intensified the infrared illumination of the comb area. The cardboard box was equipped with 
a ventilation device that kept the temperature at approximately 29 °C (±1 °C).

We used 2 × 2 mm tags bearing 2D barcodes from the AprilTags library (Fig. 1b)31 to tag and track honey-
bee workers. These 2D barcodes consisted of a square outline with a 36-bit code word encoded in the interior, 
which could generate up to 2320 unique identification (ID) numbers. An experiment on mortality and behav-
ioural observations of tagged bees showed that bees bearing tags survived and behaved as untagged bees did (see 
Introductory experiments and observations in Supplementary information online). The tracking information 
obtained by the tracking software29 contained (after postprocessing) the tag’s ID number, the x- and y-coordinates 
of its centre and its orientation with the corresponding frame number and timestamp in UNIX time (with a pre-
cision of 1/100 seconds).

Automatic behaviour classification using the tracking information. From the tracking informa-
tion, we used the JAABADetect program30 to compute social per-frame features to provide information on the 
bees’ properties in relation to their nearest nestmate in each frame (for example, the distance, speed, and orienta-
tion to the closest bee; see Kabra et al.30 for a detailed listing of social per-frame features).

To produce the ‘encounter classifier’, we labelled examples of encounter and non-encounter behaviour in 
105 minutes of tracking information and video material using the graphical user interface of the JAABA pro-
gram30. We only labelled encounter and non-encounter behaviours for which we had high confidence in clas-
sification. Thus, for encounter behaviours we only labelled those for which we could confidently identify that 
behavioural features characterizing encounter behaviours were displayed. Information about the social per-frame 
features that were computed from the tracking information was used to train the ‘encounter classifier’ via machine 
learning implemented in the JAABA program30.

The classifier’s accuracy was determined using the cross-validation method implemented in the JAABA pro-
gram30. We used JAABA’s default settings for the cross-validation and performed 10 cross-validation rounds to 
obtain an average estimate on the classifier’s accuracy (see Supplementary information online for more details on 
calculation of accuracy and cross-validation).

Manual annotation of encounter behaviours and further analysis. We manually examined the 
video recordings to detect all encounter behaviours. We determined the duration in seconds and the type of 
encounter behaviour: i) antennation behaviour, ii) begging behaviour, iii) offering behaviour, iv) trophallaxis 
behaviour.

Statistical analyses were performed using the SigmaPlot 13 software.

Bee handling. We used newly emerged honeybees that originated from a colony of western honeybee Apis 
mellifera from our bee yard at the Heinrich-Heine University of Düsseldorf, Germany. A sealed brood comb 
was taken from the source colony and incubated at 34 °C. Emerging worker bees were collected when they were 
0–24 hours old. One hundred bees were marked with hand-cut tags by gluing these centrally on the thorax of the 
bees with glue (“Opalith Zeichenleim”, Heinrich Holtermann KG, Brockel, Germany).

The bees were tracked from May 3rd to May 4th, 2016 on a comb comprising 40 capped cells filled with honey. 
Bees were restricted to one side of the comb without a queen. As worker-worker encounters were the interest of 
this study, neither a queen nor drones were included in the group. The comb did not contain brood because we 
used newly emerged worker bees for tracking, and it is known that brood rearing first begins at an age of two to 
three days3,24.

To ensure that sufficient encounter behaviours occurred during the tracking process, a proportion of the bees 
were either fed ad libitum with a sugar solution (Ambrosia Bienenfutter-Sirup, Nordzucker AG, Braunschweig, 
Germany) or starved before tracking was started. On the first day of tracking, 16 bees were fed with the sugar 
solution before starting the tracking experiment, whereas the remaining bees were starved for approximately an 
hour. For sustenance, we provided the bees with a sugar pastry (Apifonda Futterteig, Südzucker AG, Mannheim, 
Germany) two hours after tracking was started. On the second day of tracking, we removed the sugar pastry and 
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fed 15 of the 100 bees again with the sugar solution. The other 85 bees were starved for three hours. The 15 bees 
were reintroduced into the observation hive before tracking began. In total, information from 22 hours of track-
ing was generated for 96 bees. Four bees lost their tags during tracking.

Data availability. The datasets generated and analysed during the current study are available from the cor-
responding author on reasonable request. Programs developed for this study will be shared and can be requested 
from the corresponding author.
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