23 research outputs found
Design of a strain-gage probe
Strain-gage spacer probe uses the deflection of a leaf spring to measure strain in a long, slender beam nondestructively. The selected gage is of the smallest practical size, as thin as possible and yet of a standard type
Insight into the Leukemia Microenvironment and Cell-cell Interactions Using Flow Cytometry
Cancer cells, including leukemia cells, reside in a complex microenvironment, which influences biology and activity of the cells. The protective role of bone marrow stromal cells is already commonly recognized. Remodeling of stroma cell functions by leukemia cells is also well documented. In this respect, different routes of interactions were defined, such as direct cell-cell interactions or indirect cross talk, by release of soluble factors or vesicular particles containing proteins, RNAs and other molecules. Since intercellular communication seems to play a role in various biological processes, it might be important to conduct studies in co-culture systems, which at least mimic partially more physiological conditions, and enables this intercellular exchange to occur. Thus, it is crucial to improve analytical methods of investigation of co-cultured cells, to study their interactions and so to understand biology of leukemia in order to understand molecular mechanisms and offer novel therapeutic strategies. The present chapter outlines the importance of modern, multiparameter flow cytometry methods, which allow to analyze interactions between different types of cells within the leukemia microenvironment. Importantly, the proposed experimental setups can be easily transformed to study different cell types and different biological systems
Recommended from our members
Argonne National Laboratory Reports
The Mark 1A lithium/iron sulfide electric-vehicle battery, which consisted of two 20-kW-hr modules containing 60 cells each, was fabricated by Eagle-Picher Industries, Inc. and delivered to ANL for testing in May 1979. During startup heating prior to electrical testing, a short circuit developed in one of the modules, which resulted in a progressive failure of the cells. The other module, which was alongside and connected in series, was unaffected by the failure. The initial indication of difficulty was a small drop in the voltage of several cells, followed by short circuits in the balance of the cells and localized temperatures above 1000 C. A team consisting of ANL and Eagle-Picher personnel conducted a detailed failure analysis as the failed module was disassembled. The other module was also examined for purposes of comparison. The general conclusion was that the short circuit was initiated by electrolyte leakage and resulting corrosion in the nearby region which formed metallic bridges between cells and the cell ray, or arcing between cells and the cell tray through the butt joints in the electrical insulation. The above two mechanisms were also believed to be responsible for the failure propagation
Effect of black corn anthocyanin-rich extract (Zea mays L.) on cecal microbial populations in vivo (Gallus gallus).
Black corn has been attracting attention to investigate its biological properties due to its anthocyanin composition, mainly cyanidin-3-glucoside. Our study evaluated the effects of black corn extract (BCE) on intestinal morphology, gene expression, and the cecal microbiome. The BCE intra-amniotic administration was evaluated by an animal model in Gallus gallus. The eggs (n = 8 per group) were divided into: (1) no injection; (2) 18 MΩ H2O; (3) 5% black corn extract (BCE); and (4) 0.38% cyanidin-3-glucoside (C3G). A total of 1 mL of each component was injected intra-amniotic on day 17 of incubation. On day 21, the animals were euthanized after hatching, and the duodenum and cecum content were collected. The cecal microbiome changes were attributed to BCE administration, increasing the population of Bifidobacterium and Clostridium, and decreasing E. coli. The BCE did not change the gene expression of intestinal inflammation and functionality. The BCE administration maintained the villi height, Paneth cell number, and goblet cell diameter (in the villi and crypt), similar to the H2O injection but smaller than the C3G. Moreover, a positive correlation was observed between Bifidobacterium, Clostridium, E. coli, and villi GC diameter. The BCE promoted positive changes in the cecum microbiome and maintained intestinal morphology and functionalit
Intra-Amniotic Administration—An Emerging Method to Investigate Necrotizing Enterocolitis, In Vivo (Gallus gallus)
Necrotizing enterocolitis (NEC) is a severe gastrointestinal disease in premature infants and a leading cause of death in neonates (1–7% in the US). NEC is caused by opportunistic bacteria, which cause gut dysbiosis and inflammation and ultimately result in intestinal necrosis. Previous studies have utilized the rodent and pig models to mimic NEC, whereas the current study uses the in vivo (Gallus gallus) intra-amniotic administration approach to investigate NEC. On incubation day 17, broiler chicken (Gallus gallus) viable embryos were injected intra-amniotically with 1 mL dextran sodium sulfate (DSS) in H2O. Four treatment groups (0.1%, 0.25%, 0.5%, and 0.75% DSS) and two controls (H2O/non-injected controls) were administered. We observed a significant increase in intestinal permeability and negative intestinal morphological changes, specifically, decreased villus surface area and goblet cell diameter in the 0.50% and 0.75% DSS groups. Furthermore, there was a significant increase in pathogenic bacterial (E. coli spp. and Klebsiella spp.) abundances in the 0.75% DSS group compared to the control groups, demonstrating cecal microbiota dysbiosis. These results demonstrate significant physiopathology of NEC and negative bacterial–host interactions within a premature gastrointestinal system. Our present study demonstrates a novel model of NEC through intra-amniotic administration to study the effects of NEC on intestinal functionality, morphology, and gut microbiota in vivo
Recommended from our members
Argonne National Laboratory Reports
A process is being developed by the Sodium Waste Technology Program at ANL-W to remove metallic sodium from scrap and waste. The final step in the process is the removal of residual metallic sodium by evaporation at temperatures up to 482 C (900 F) and at pressures of about 10⁻² torr (1.3 Pa). Efficient operation of this process requires that the operators have a method to indicate the completion of the evaporation. This end point would signify when the chamber and scrap and waste is free of metallic sodium. It was determined that a measure of the vacuum was not sufficiently sensitive, and a research effort was undertaken to select an on-line monitoring device. In this effort, three promising methods were reviewed. The use of quadrupole mass spectrometer was recommended and an on-line device was designed for use in a Sodium Process Demonstration (SPD) Plant
Recommended from our members
Development of on-line monitoring device to detect the presence/absence of sodium vapor
A process is being developed by the Sodium Waste Technology Program at ANL-W to remove metallic sodium from scrap and waste. The final step in the process is the removal of residual metallic sodium by evaporation at temperatures up to 482/sup 0/C (900/sup 0/F) and at pressures of about 10/sup -2/ torr (1.3 Pa). Efficient operation of this process requires that the operators have a method to indicate the completion of the evaporation. This end point would signify when the chamber and scrap and waste is free of metallic sodium. It was determined that a measure of the vacuum was not sufficiently sensitive, and a research effort was undertaken to select an on-line monitoring device. In this effort, three promising methods were reviewed. The use of quadrupole mass spectrometer was recommended and an on-line device was designed for use in a Sodium Process Demonstration (SPD) Plant
Recommended from our members
Argonne National Laboratory Reports
This report describes the design of a facility capable of the simultaneous testing of up to 50 high-temperature (400 to 500 C) lithium alloy/iron sulfide cells; this facility is located in the Chemical Engineering Division of Argonne National Laboratory (ANL). The emphasis will be on the lifetime testing of cells fabricated by ANL and industrial contractors to acquire statistical data on the performance of cells of various designs. A computer-based data-acquisition system processes the cell performance data generated from the cells on test. The terminals and part of the data-acquisition equipment are housed in an air-conditioned enclosure adjacent to the testing facility; the computer is located remotely
Zinc biofortified Cowpea (Vigna unguiculata L. Walp.) soluble extracts modulate assessed cecal bacterial pulations and gut morphology In Vivo (Gallus gallus).
Biofortification is a method that improves the nutritional value of food crops through conventional plant breeding. The aim of this study was to evaluate the effects of intra-amniotic administration of soluble extracts from zinc (Zn) biofortified and Zn standard cowpea (Vigna unguiculata L. Walp.) flour on intestinal functionality and morphology, inflammation, and gut microbiota, in vivo