5,686 research outputs found
Close-packed structures and phase diagram of soft spheres in cylindrical pores
It is shown for a model system consisting of spherical particles confined in cylindrical pores that the first ten close-packed phases are in one-to-one correspondence with the first ten ways of folding a triangular lattice, each being characterized by a roll-up vector like the single-walled carbon nanotube. Phase diagrams in pressure-diameter and temperature-diameter planes are obtained by inherent-structure calculation and molecular dynamics simulation. The phase boundaries dividing two adjacent phases are infinitely sharp in the low-temperature limit but are blurred as temperature is increased. Existence of such phase boundaries explains rich, diameter-sensitive phase behavior unique for cylindrically confined systems
Universal properties from local geometric structure of Killing horizon
We consider universal properties that arise from a local geometric structure
of a Killing horizon. We first introduce a non-perturbative definition of such
a local geometric structure, which we call an asymptotic Killing horizon. It is
shown that infinitely many asymptotic Killing horizons reside on a common null
hypersurface, once there exists one asymptotic Killing horizon. The
acceleration of the orbits of the vector that generates an asymptotic Killing
horizon is then considered. We show that there exists the
or sub-algebra on an asymptotic Killing horizon
universally, which is picked out naturally based on the behavior of the
acceleration. We also argue that the discrepancy between string theory and the
Euclidean approach in the entropy of an extreme black hole may be resolved, if
the microscopic states responsible for black hole thermodynamics are connected
with asymptotic Killing horizons.Comment: 14 pages, v2. minor correction
Numerical Renormalization Group Study of non-Fermi-liquid State on Dilute Uranium Systems
We investigate the non-Fermi-liquid (NFL) behavior of the impurity Anderson
model (IAM) with non-Kramers doublet ground state of the f configuration
under the tetragonal crystalline electric field (CEF). The low energy spectrum
is explained by a combination of the NFL and the local-Fermi-liquid parts which
are independent with each other. The NFL part of the spectrum has the same form
to that of two-channel-Kondo model (TCKM). We have a parameter range that the
IAM shows the divergence of the magnetic susceptibility together with
the positive magneto resistance. We point out a possibility that the anomalous
properties of UThRuSi including the decreasing resistivity
with decreasing temperature can be explained by the NFL scenario of the TCKM
type. We also investigate an effect of the lowering of the crystal symmetry. It
breaks the NFL behavior at around the temperature, , where
is the orthorhombic CEF splitting. The NFL behavior is still expected above the
temperature, .Comment: 25 pages, 12 figure
Asymptotic symmetries on Kerr--Newman horizon without anomaly of diffeomorphism invariance
We analyze asymptotic symmetries on the Killing horizon of the
four-dimensional Kerr--Newman black hole. We first derive the asymptotic
Killing vectors on the Killing horizon, which describe the asymptotic
symmetries, and find that the general form of these asymptotic Killing vectors
is the universal one possessed by arbitrary Killing horizons. We then construct
the phase space associated with the asymptotic symmetries. It is shown that the
phase space of an extreme black hole either has the size comparable with a
non-extreme black hole, or is small enough to exclude degeneracy, depending on
whether or not the global structure of a Killing horizon particular to an
extreme black hole is respected. We also show that the central charge in the
Poisson brackets algebra of these asymptotic symmetries vanishes, which implies
that there is not an anomaly of diffeomorphism invariance. By taking into
account other results in the literature, we argue that the vanishing central
charge on a black hole horizon, in an effective theory, looks consistent with
the thermal feature of a black hole. We furthermore argue that the vanishing
central charge implies that there are infinitely many classical configurations
that are associated with the same macroscopic state, while these configurations
are distinguished physically.Comment: 14 pages, v2: references added, minor corrections, v3: new pars and
refs. added and corresponding correction
Small Energy Scale for Mixed-Valent Uranium Materials
We investigate a two-channel Anderson impurity model with a magnetic
and a quadrupolar ground doublet, and a excited triplet. Using
the numerical renormalization group method, we find a crossover to a non-Fermi
liquid state below a temperature varying as the triplet-doublet
splitting to the 7/2 power. To within numerical accuracy, the non-linear
magnetic susceptibility and the contribution to the linear
susceptibility are given by universal one-parameter scaling functions. These
results may explain UBe as mixed valent with a small crossover scale
.Comment: 4 pages, 3 figures, REVTeX, to appear in Phys. Rev. Let
On the thermodynamic stability and structural transition of clathrate hydrates
Gas mixtures of methane and ethane form structure II clathrate hydrates despite the fact that each of pure methane and pure ethane gases forms the structure I hydrate. Optimization of the interaction potential parameters for methane and ethane is attempted so as to reproduce the dissociation pressures of each simple hydrate containing either methane or ethane alone. An account for the structural transitions between type I and type II hydrates upon changing the mole fraction of the gas mixture is given on the basis of the van der Waals and Platteeuw theory with these optimized potentials. Cage occupancies of the two kinds of hydrates are also calculated as functions of the mole fraction at the dissociation pressure and at a fixed pressure well above the dissociation pressure
Critical Nature of Non-Fermi Liquid in Spin 3/2 Multipolar Kondo Model
A multipolar Kondo model of an impurity spin S_I=3/2 interacting with
conduction electrons with spin s_c=3/2 is investigated using boundary conformal
field theory. A two-channel Kondo (2CK) -like non-Fermi liquid (NFL) under the
particle-hole symmetry is derived explicitly using a ``superspin absorption''
in the sector of a hidden symmetry, SO(5). We discuss the difference between
the usual spin-1/2 2CK NFL fixed point and the present one. In particular, we
find that, unlike the usual 2CK model, the low temperature impurity specific
heat is proportional to temperature.Comment: 4 pages, 2 figure
Spin splitting and precession in quantum dots with spin-orbit coupling: the role of spatial deformation
Extending a previous work on spin precession in GaAs/AlGaAs quantum dots with
spin-orbit coupling, we study the role of deformation in the external
confinement. Small elliptical deformations are enough to alter the precessional
characteristics at low magnetic fields. We obtain approximate expressions for
the modified factor including weak Rashba and Dresselhaus spin-orbit terms.
For more intense couplings numerical calculations are performed. We also study
the influence of the magnetic field orientation on the spin splitting and the
related anisotropy of the factor. Using realistic spin-orbit strengths our
model calculations can reproduce the experimental spin-splittings reported by
Hanson et al. (cond-mat/0303139) for a one-electron dot. For dots containing
more electrons, Coulomb interaction effects are estimated within the
local-spin-density approximation, showing that many features of the
non-iteracting system are qualitatively preserved.Comment: 7 pages, 7 figure
Solution of the Two-Channel Anderson Impurity Model - Implications for the Heavy Fermion UBe -
We solve the two-channel Anderson impurity model using the Bethe-Ansatz. We
determine the ground state and derive the thermodynamics, obtaining the
impurity entropy and specific heat over the full range of temperature. We show
that the low temperature physics is given by a line of fixed points decribing a
two-channel non Fermi liquid behavior in the integral valence regime associated
with moment formation as well as in the mixed valence regime where no moment
forms. We discuss relevance for the theory of UBe.Comment: 4 pages, 2 figures, (to be published in PRL
Orbital Localization and Delocalization Effects in the U 5f^2 Configuration: Impurity Problem
Anderson models, based on quantum chemical studies of the molecule of
U(C_8H_8)_2, are applied to investigate the problem of an U impurity in a
metal. The special point here is that the U 5f-orbitals are divided into two
subsets: an almost completely localized set and a considerably delocalized one.
Due to the crystal field, both localized and delocalized U 5f-orbitals affect
the low-energy physics. A numerical renormalization group study shows that
every fixed point is characterized by a residual local spin and a phase shift.
The latter changes between 0 and \pi/2, which indicates the competition between
two different fixed points. Such a competition between the different local
spins at the fixed points reflects itself in the impurity magnetic
susceptibility at high temperatures. These different features cannot be
obtained if the special characters of U 5f-orbitals are neglected.Comment: 4 pages, REVTeX, email to [email protected]
- …
