470 research outputs found

    Intrinsic definitions of "relative velocity" in general relativity

    Full text link
    Given two observers, we define the "relative velocity" of one observer with respect to the other in four different ways. All four definitions are given intrinsically, i.e. independently of any coordinate system. Two of them are given in the framework of spacelike simultaneity and, analogously, the other two are given in the framework of observed (lightlike) simultaneity. Properties and physical interpretations are discussed. Finally, we study relations between them in special relativity, and we give some examples in Schwarzschild and Robertson-Walker spacetimes.Comment: 29 pages, 12 figures. New proofs in special relativity and a new open problem in general relativity (see Remark 5.2). An Appendix has been added, studying the relative velocities in Schwarzschild, with new figures. Some spelling erros fixe

    The dynamics of audience applause

    Get PDF
    The study of social identity and crowd psychology looks at how and why individual people change their behaviour in response to others. Within a group, a new behaviour can emerge first in a few individuals before it spreads rapidly to all other members. A number of mathematical models have been hypothesized to describe these social contagion phenomena, but these models remain largely untested against empirical data. We used Bayesian model selection to test between various hypotheses about the spread of a simple social behaviour, applause after an academic presentation. Individuals' probability of starting clapping increased in proportion to the number of other audience members already ‘infected’ by this social contagion, regardless of their spatial proximity. The cessation of applause is similarly socially mediated, but is to a lesser degree controlled by the reluctance of individuals to clap too many times. We also found consistent differences between individuals in their willingness to start and stop clapping. The social contagion model arising from our analysis predicts that the time the audience spends clapping can vary considerably, even in the absence of any differences in the quality of the presentations they have heard

    Migration paths saturations in meta-epidemic systems

    Full text link
    In this paper we consider a simple two-patch model in which a population affected by a disease can freely move. We assume that the capacity of the interconnected paths is limited, and thereby influencing the migration rates. Possible habitat disruptions due to human activities or natural events are accounted for. The demographic assumptions prevent the ecosystem to be wiped out, and the disease remains endemic in both populated patches at a stable equilibrium, but possibly also with an oscillatory behavior in the case of unidirectional migrations. Interestingly, if infected cannot migrate, it is possible that one patch becomes disease-free. This fact could be exploited to keep disease-free at least part of the population

    Activity driven modeling of time varying networks

    Get PDF
    Network modeling plays a critical role in identifying statistical regularities and structural principles common to many systems. The large majority of recent modeling approaches are connectivity driven. The structural patterns of the network are at the basis of the mechanisms ruling the network formation. Connectivity driven models necessarily provide a time-aggregated representation that may fail to describe the instantaneous and fluctuating dynamics of many networks. We address this challenge by defining the activity potential, a time invariant function characterizing the agents' interactions and constructing an activity driven model capable of encoding the instantaneous time description of the network dynamics. The model provides an explanation of structural features such as the presence of hubs, which simply originate from the heterogeneous activity of agents. Within this framework, highly dynamical networks can be described analytically, allowing a quantitative discussion of the biases induced by the time-aggregated representations in the analysis of dynamical processes.Comment: 10 pages, 4 figure

    Height and risk of death among men and women: aetiological implications of associations with cardiorespiratory disease and cancer mortality

    Get PDF
    OBJECTIVES: Height is inversely associated with cardiovascular disease mortality risk and has shown variable associations with cancer incidence and mortality. The interpretation of findings from previous studies has been constrained by data limitations. Associations between height and specific causes of death were investigated in a large general population cohort of men and women from the West of Scotland. DESIGN: Prospective observational study. SETTING: Renfrew and Paisley, in the West of Scotland. SUBJECTS: 7052 men and 8354 women aged 45-64 were recruited into a study in Renfrew and Paisley, in the West of Scotland, between 1972 and 1976. Detailed assessments of cardiovascular disease risk factors, morbidity and socioeconomic circumstances were made at baseline. MAIN OUTCOME MEASURES: Deaths during 20 years of follow up classified into specific causes. RESULTS: Over the follow up period 3347 men and 2638 women died. Height is inversely associated with all cause, coronary heart disease, stroke, and respiratory disease mortality among men and women. Adjustment for socioeconomic position and cardiovascular risk factors had little influence on these associations. Height is strongly associated with forced expiratory volume in one second (FEV1) and adjustment for FEV1 considerably attenuated the association between height and cardiorespiratory mortality. Smoking related cancer mortality is not associated with height. The risk of deaths from cancer unrelated to smoking tended to increase with height, particularly for haematopoietic, colorectal and prostate cancers. Stomach cancer mortality was inversely associated with height. Adjustment for socioeconomic position had little influence on these associations. CONCLUSION: Height serves partly as an indicator of socioeconomic circumstances and nutritional status in childhood and this may underlie the inverse associations between height and adulthood cardiorespiratory mortality. Much of the association between height and cardiorespiratory mortality was accounted for by lung function, which is also partly determined by exposures acting in childhood. The inverse association between height and stomach cancer mortality probably reflects Helicobacter pylori infection in childhood resulting inor being associated withshorter height. The positive associations between height and several cancers unrelated to smoking could reflect the influence of calorie intake during childhood on the risk of these cancers

    Dynamics of multi-stage infections on networks

    Get PDF
    This paper investigates the dynamics of infectious diseases with a nonexponentially distributed infectious period. This is achieved by considering a multistage infection model on networks. Using pairwise approximation with a standard closure, a number of important characteristics of disease dynamics are derived analytically, including the final size of an epidemic and a threshold for epidemic outbreaks, and it is shown how these quantities depend on disease characteristics, as well as the number of disease stages. Stochastic simulations of dynamics on networks are performed and compared to output of pairwise models for several realistic examples of infectious diseases to illustrate the role played by the number of stages in the disease dynamics. These results show that a higher number of disease stages results in faster epidemic outbreaks with a higher peak prevalence and a larger final size of the epidemic. The agreement between the pairwise and simulation models is excellent in the cases we consider
    corecore