663 research outputs found
Near-zero-energy end states in topologically trivial spin-orbit coupled superconducting nanowires with a smooth confinement
A one-dimensional spin-orbit coupled nanowire with proximity-induced pairing
from a nearby s-wave superconductor may be in a topological nontrivial state,
in which it has a zero energy Majorana bound state at each end. We find that
the topological trivial phase may have fermionic end states with an
exponentially small energy, if the confinement potential at the wire's ends is
smooth. The possible existence of such near-zero energy levels implies that the
mere observation of a zero-bias peak in the tunneling conductance is not an
exclusive signature of a topological superconducting phase even in the ideal
clean single channel limit.Comment: 4 pages, 4 figure
Topological Blocking in Quantum Quench Dynamics
We study the non-equilibrium dynamics of quenching through a quantum critical
point in topological systems, focusing on one of their defining features:
ground state degeneracies and associated topological sectors. We present the
notion of 'topological blocking', experienced by the dynamics due to a mismatch
in degeneracies between two phases and we argue that the dynamic evolution of
the quench depends strongly on the topological sector being probed. We
demonstrate this interplay between quench and topology in models stemming from
two extensively studied systems, the transverse Ising chain and the Kitaev
honeycomb model. Through non-local maps of each of these systems, we
effectively study spinless fermionic -wave paired superconductors. Confining
the systems to ring and toroidal geometries, respectively, enables us to
cleanly address degeneracies, subtle issues of fermion occupation and parity,
and mismatches between topological sectors. We show that various features of
the quench, which are related to Kibble-Zurek physics, are sensitive to the
topological sector being probed, in particular, the overlap between the
time-evolved initial ground state and an appropriate low-energy state of the
final Hamiltonian. While most of our study is confined to translationally
invariant systems, where momentum is a convenient quantum number, we briefly
consider the effect of disorder and illustrate how this can influence the
quench in a qualitatively different way depending on the topological sector
considered.Comment: 18 pages, 11 figure
Arm cavity resonant sideband control for laser interferometric gravitational wave detectors
We present a new optical control scheme for a laser interferometric gravitational wave detector that has a high degree of tolerance to interferometer spatial distortions and noise on the input light. The scheme involves resonating the rf sidebands in an interferometer arm cavity
Endstates in multichannel spinless p-wave superconducting wires
Multimode spinless p-wave superconducting wires with a width W much smaller
than the superconducting coherence length \xi are known to have multiple
low-energy subgap states localized near the wire's ends. Here we compare the
typical energies of such endstates for various terminations of the wire: A
superconducting wire coupled to a normal-metal stub, a weakly disordered
superconductor wire and a wire with smooth confinement. Depending on the
termination, we find that the energies of the subgap states can be higher or
lower than for the case of a rectangular wire with hard-wall boundaries.Comment: 10 pages, 7 figure
Exact results for the star lattice chiral spin liquid
We examine the star lattice Kitaev model whose ground state is a a chiral
spin liquid. We fermionize the model such that the fermionic vacua are toric
code states on an effective Kagome lattice. This implies that the Abelian phase
of the system is inherited from the fermionic vacua and that time reversal
symmetry is spontaneously broken at the level of the vacuum. In terms of these
fermions we derive the Bloch-matrix Hamiltonians for the vortex free sector and
its time reversed counterpart and illuminate the relationships between the
sectors. The phase diagram for the model is shown to be a sphere in the space
of coupling parameters around the triangles of the lattices. The abelian phase
lies inside the sphere and the critical boundary between topologically distinct
Abelian and non-Abelian phases lies on the surface. Outside the sphere the
system is generically gapped except in the planes where the coupling parameters
are zero. These cases correspond to bipartite lattice structures and the
dispersion relations are similar to that of the original Kitaev honeycomb
model. In a further analysis we demonstrate the three-fold non-Abelian
groundstate degeneracy on a torus by explicit calculation.Comment: 7 pages, 8 figure
Interacting non-Abelian anyons as Majorana fermions in the honeycomb lattice model
We study the collective states of interacting non-Abelian anyons that emerge
in Kitaev's honeycomb lattice model. Vortex-vortex interactions are shown to
lead to the lifting of the topological degeneracy and the energy is discovered
to exhibit oscillations that are consistent with Majorana fermions being
localized at vortex cores. We show how to construct states corresponding to the
fusion channel degrees of freedom and obtain the energy gaps characterizing the
stability of the topological low energy spectrum. To study the collective
behavior of many vortices, we introduce an effective lattice model of Majorana
fermions. We find necessary conditions for it to approximate the spectrum of
the honeycomb lattice model and show that bi-partite interactions are
responsible for the degeneracy lifting also in many vortex systems.Comment: 22 pages, 12 figures, published versio
Multi-wavelength Observations of Dusty Star Formation at Low and High Redshift
This paper examines what can be learned about high-redshift star formation
from the small fraction of high-redshift galaxies' luminosities that is emitted
at accessible wavelengths. We review and quantify empirical correlations
between bolometric luminosities produced by star formation and the UV, mid-IR,
sub-mm, and radio luminosities of galaxies in the local universe. These
correlations suggest that observations of high-redshift galaxies at any of
these wavelengths should constrain their star-formation rates to within
0.2--0.3 dex. We assemble the limited evidence that high-redshift galaxies obey
these locally calibrated correlations. The characteristic luminosities and dust
obscurations of galaxies at z ~ 0, z ~ 1, and z ~ 3 are reviewed. After
discussing the relationship between the high-redshift populations selected in
surveys at different wavelengths, we calculate the contribution to the 850um
background from each. The available data show that a correlation between
star-formation rate and dust obscuration L_dust/L_UV exists at low and high
redshift. This correlation plays a central role in the major conclusion of this
paper: most star formation at high redshift occurred in galaxies with 1 <
L_dust/L_UV < 100 similar to those that host the majority of star formation in
the local universe and to those that are detected in UV-selected surveys.
(abridged)Comment: Scheduled for publication in ApJ v544 Dec 2000. Significant changes
to section 4. Characteristic UV and dust luminosities of star-forming
galaxies at redshifts z~0, z~1, and z~3 presented. Existence of extremely
obscured galaxies more clearly acknowledged. Original conclusions reinforced
by the observed correlation between bolometric luminosity and dust
obscuration at 0<z<
Exact Chiral Spin Liquids and Mean-Field Perturbations of Gamma Matrix Models on the Ruby Lattice
We theoretically study an exactly solvable Gamma matrix generalization of the
Kitaev spin model on the ruby lattice, which is a honeycomb lattice with
"expanded" vertices and links. We find this model displays an exceptionally
rich phase diagram that includes: (i) gapless phases with stable spin fermi
surfaces, (ii) gapless phases with low-energy Dirac cones and quadratic band
touching points, and (iii) gapped phases with finite Chern numbers possessing
the values {\pm}4,{\pm}3,{\pm}2 and {\pm}1. The model is then generalized to
include Ising-like interactions that break the exact solvability of the model
in a controlled manner. When these terms are dominant, they lead to a trivial
Ising ordered phase which is shown to be adiabatically connected to a large
coupling limit of the exactly solvable phase. In the limit when these
interactions are weak, we treat them within mean-field theory and present the
resulting phase diagrams. We discuss the nature of the transitions between
various phases. Our results highlight the richness of possible ground states in
closely related magnetic systems.Comment: 9 pages, 9 figure
Magnetic resonance imaging-guided phase 1 trial of putaminal AADC gene therapy for Parkinson's disease.
ObjectiveTo understand the safety, putaminal coverage, and enzyme expression of adeno-associated viral vector serotype-2 encoding the complementary DNA for the enzyme, aromatic L-amino acid decarboxylase (VY-AADC01), delivered using novel intraoperative monitoring to optimize delivery.MethodsFifteen subjects (three cohorts of 5) with moderately advanced Parkinson's disease and medically refractory motor fluctuations received VY-AADC01 bilaterally coadministered with gadoteridol to the putamen using intraoperative magnetic resonance imaging (MRI) guidance to visualize the anatomic spread of the infusate and calculate coverage. Cohort 1 received 8.3 × 1011 vg/ml and ≤450 μl per putamen (total dose, ≤7.5 × 1011 vg); cohort 2 received the same concentration (8.3 × 1011 vg/ml) and ≤900 μl per putamen (total dose, ≤1.5 × 1012 vg); and cohort 3 received 2.6 × 1012 vg/ml and ≤900 μl per putamen (total dose, ≤4.7 × 1012 vg). (18)F-fluoro-L-dihydroxyphenylalanine positron emission tomography (PET) at baseline and 6 months postprocedure assessed enzyme activity; standard assessments measured clinical outcomes.ResultsMRI-guided administration of ascending VY-AADC01 doses resulted in putaminal coverage of 21% (cohort 1), 34% (cohort 2), and 42% (cohort 3). Cohorts 1, 2, and 3 showed corresponding increases in enzyme activity assessed by PET of 13%, 56%, and 79%, and reductions in antiparkinsonian medication of -15%, -33%, and -42%, respectively, at 6 months. At 12 months, there were dose-related improvements in clinical outcomes, including increases in patient-reported ON-time without troublesome dyskinesia (1.6, 3.3, and 1.5 hours, respectively) and quality of life.InterpretationNovel intraoperative monitoring of administration facilitated targeted delivery of VY-AADC01 in this phase 1 study, which was well tolerated. Increases in enzyme expression and clinical improvements were dose dependent. ClinicalTrials.gov Identifier: NCT01973543 Ann Neurol 2019;85:704-714
- …