827 research outputs found

    Neutron-powered precursors of kilonovae

    Full text link
    The merger of binary neutron stars (NSs) ejects a small quantity of neutron rich matter, the radioactive decay of which powers a day to week long thermal transient known as a kilonova. Most of the ejecta remains sufficiently dense during its expansion that all neutrons are captured into nuclei during the r-process. However, recent general relativistic merger simulations by Bauswein and collaborators show that a small fraction of the ejected mass (a few per cent, or ~1e-4 Msun) expands sufficiently rapidly for most neutrons to avoid capture. This matter originates from the shocked-heated interface between the merging NSs. Here we show that the beta-decay of these free neutrons in the outermost ejecta powers a `precursor' to the main kilonova emission, which peaks on a timescale of a few hours following merger at U-band magnitude ~22 (for an assumed distance of 200 Mpc). The high luminosity and blue colors of the neutron precursor render it a potentially important counterpart to the gravitational wave source, that may encode valuable information on the properties of the merging binary (e.g. NS-NS versus NS-black hole) and the NS equation of state. Future work is necessary to assess the robustness of the fast moving ejecta and the survival of free neutrons in the face of neutrino absorptions, although the precursor properties are robust to a moderate amount of leptonization. Our results provide additional motivation for short latency gravitational wave triggers and rapid follow-up searches with sensitive ground based telescopes.Comment: 6 pages, 5 figures, accepted to MNRAS main journa

    Modeling the Diversity of Type Ia Supernova Explosions

    Full text link
    Type Ia supernovae (SNe Ia) are a prime tool in observational cosmology. A relation between their peak luminosities and the shapes of their light curves allows to infer their intrinsic luminosities and to use them as distance indicators. This relation has been established empirically. However, a theoretical understanding is necessary in order to get a handle on the systematics in SN Ia cosmology. Here, a model reproducing the observed diversity of normal SNe Ia is presented. The challenge in the numerical implementation arises from the vast range of scales involved in the physical mechanism. Simulating the supernova on scales of the exploding white dwarf requires specific models of the microphysics involved in the thermonuclear combustion process. Such techniques are discussed and results of simulations are presented.Comment: 6 pages, ASTRONUM-2009 "Numerical Modeling of Space Plasma Flows", Chamonix, France, July 2009, to appear in ASP Conf. Pro

    Monte Carlo Neutrino Transport Through Remnant Disks from Neutron Star Mergers

    Get PDF
    We present Sedonu, a new open source, steady-state, special relativistic Monte Carlo (MC) neutrino transport code, available at bitbucket.org/srichers/sedonu. The code calculates the energy- and angle-dependent neutrino distribution function on fluid backgrounds of any number of spatial dimensions, calculates the rates of change of fluid internal energy and electron fraction, and solves for the equilibrium fluid temperature and electron fraction. We apply this method to snapshots from two-dimensional simulations of accretion disks left behind by binary neutron star mergers, varying the input physics and comparing to the results obtained with a leakage scheme for the case of a central black hole and a central hypermassive neutron star. Neutrinos are guided away from the densest regions of the disk and escape preferentially around 45 degrees from the equatorial plane. Neutrino heating is strengthened by MC transport a few scale heights above the disk midplane near the innermost stable circular orbit, potentially leading to a stronger neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is stronger when using MC transport, leading to a globally higher cooling rate by a factor of a few and a larger leptonization rate by an order of magnitude. We calculate neutrino pair annihilation rates and estimate that an energy of 2.8e46 erg is deposited within 45 degrees of the symmetry axis over 300 ms when a central BH is present. Similarly, 1.9e48 erg is deposited over 3 s when an HMNS sits at the center, but neither estimate is likely to be sufficient to drive a GRB jet.Comment: 23 pages, 16 figures, Accepted to The Astrophysical Journa

    Is there a hidden hole in Type Ia supernova remnants?

    Get PDF
    In this paper we report on the bulk features of the hole carved by the companion star in the material ejected during a Type Ia supernova explosion. In particular we are interested in the long term evolution of the hole as well as in its fingerprint in the geometry of the supernova remnant after several centuries of evolution, which is a hot topic in current Type Iasupernovae studies. We use an axisymmetric smoothed particle hydrodynamics code to characterize the geometric properties of the supernova remnant resulting from the interaction of this ejected material with the ambient medium. Our aim is to use supernova remnant observations to constrain the single degenerate scenario for Type Ia supernova progenitors. Our simulations show that the hole will remain open during centuries, although its partial or total closure at later times due to hydrodynamic instabilities is not excluded. Close to the edge of the hole, the Rayleigh-Taylor instability grows faster, leading to plumes that approach the edge of the forward shock. We also discuss other geometrical properties of the simulations, like the evolution of the contact discontinuity.Comment: 48 pages, 17 figures; Accepted for publication in Ap

    Explosion models for thermonuclear supernovae resulting from different ignition conditions

    Full text link
    We have explored in three dimensions the fate of a massive white dwarf as a function of different initial locations of carbon ignition, with the aid of a SPH code. The calculated models cover a variety of possibilities ranging from the simultaneous ignition of the central volume of the star to the off-center ignition in multiple scattered spots. In the former case, there are discussed the possibility of a transition to a detonation when the mean density of the nuclear flame decreases below 2x10**7 g cm**-3, and its consequences. In the last case, the dependence of the results on the number of initial igniting spots and the chance of some of these models to evolve to the pulsating delayed detonation scenario are also outlined.Comment: 5 pages, 1 figure, proceedings of IAU Colloquium 192, 'Supernovae (10 years of SN1993J)', 22-26 April 2003, Valencia, Spai
    corecore