827 research outputs found
Neutron-powered precursors of kilonovae
The merger of binary neutron stars (NSs) ejects a small quantity of neutron
rich matter, the radioactive decay of which powers a day to week long thermal
transient known as a kilonova. Most of the ejecta remains sufficiently dense
during its expansion that all neutrons are captured into nuclei during the
r-process. However, recent general relativistic merger simulations by Bauswein
and collaborators show that a small fraction of the ejected mass (a few per
cent, or ~1e-4 Msun) expands sufficiently rapidly for most neutrons to avoid
capture. This matter originates from the shocked-heated interface between the
merging NSs. Here we show that the beta-decay of these free neutrons in the
outermost ejecta powers a `precursor' to the main kilonova emission, which
peaks on a timescale of a few hours following merger at U-band magnitude ~22
(for an assumed distance of 200 Mpc). The high luminosity and blue colors of
the neutron precursor render it a potentially important counterpart to the
gravitational wave source, that may encode valuable information on the
properties of the merging binary (e.g. NS-NS versus NS-black hole) and the NS
equation of state. Future work is necessary to assess the robustness of the
fast moving ejecta and the survival of free neutrons in the face of neutrino
absorptions, although the precursor properties are robust to a moderate amount
of leptonization. Our results provide additional motivation for short latency
gravitational wave triggers and rapid follow-up searches with sensitive ground
based telescopes.Comment: 6 pages, 5 figures, accepted to MNRAS main journa
Modeling the Diversity of Type Ia Supernova Explosions
Type Ia supernovae (SNe Ia) are a prime tool in observational cosmology. A
relation between their peak luminosities and the shapes of their light curves
allows to infer their intrinsic luminosities and to use them as distance
indicators. This relation has been established empirically. However, a
theoretical understanding is necessary in order to get a handle on the
systematics in SN Ia cosmology. Here, a model reproducing the observed
diversity of normal SNe Ia is presented. The challenge in the numerical
implementation arises from the vast range of scales involved in the physical
mechanism. Simulating the supernova on scales of the exploding white dwarf
requires specific models of the microphysics involved in the thermonuclear
combustion process. Such techniques are discussed and results of simulations
are presented.Comment: 6 pages, ASTRONUM-2009 "Numerical Modeling of Space Plasma Flows",
Chamonix, France, July 2009, to appear in ASP Conf. Pro
Monte Carlo Neutrino Transport Through Remnant Disks from Neutron Star Mergers
We present Sedonu, a new open source, steady-state, special relativistic
Monte Carlo (MC) neutrino transport code, available at
bitbucket.org/srichers/sedonu. The code calculates the energy- and
angle-dependent neutrino distribution function on fluid backgrounds of any
number of spatial dimensions, calculates the rates of change of fluid internal
energy and electron fraction, and solves for the equilibrium fluid temperature
and electron fraction. We apply this method to snapshots from two-dimensional
simulations of accretion disks left behind by binary neutron star mergers,
varying the input physics and comparing to the results obtained with a leakage
scheme for the case of a central black hole and a central hypermassive neutron
star. Neutrinos are guided away from the densest regions of the disk and escape
preferentially around 45 degrees from the equatorial plane. Neutrino heating is
strengthened by MC transport a few scale heights above the disk midplane near
the innermost stable circular orbit, potentially leading to a stronger
neutrino-driven wind. Neutrino cooling in the dense midplane of the disk is
stronger when using MC transport, leading to a globally higher cooling rate by
a factor of a few and a larger leptonization rate by an order of magnitude. We
calculate neutrino pair annihilation rates and estimate that an energy of
2.8e46 erg is deposited within 45 degrees of the symmetry axis over 300 ms when
a central BH is present. Similarly, 1.9e48 erg is deposited over 3 s when an
HMNS sits at the center, but neither estimate is likely to be sufficient to
drive a GRB jet.Comment: 23 pages, 16 figures, Accepted to The Astrophysical Journa
Is there a hidden hole in Type Ia supernova remnants?
In this paper we report on the bulk features of the hole carved by the
companion star in the material ejected during a Type Ia supernova explosion. In
particular we are interested in the long term evolution of the hole as well as
in its fingerprint in the geometry of the supernova remnant after several
centuries of evolution, which is a hot topic in current Type Iasupernovae
studies. We use an axisymmetric smoothed particle hydrodynamics code to
characterize the geometric properties of the supernova remnant resulting from
the interaction of this ejected material with the ambient medium. Our aim is to
use supernova remnant observations to constrain the single degenerate scenario
for Type Ia supernova progenitors. Our simulations show that the hole will
remain open during centuries, although its partial or total closure at later
times due to hydrodynamic instabilities is not excluded. Close to the edge of
the hole, the Rayleigh-Taylor instability grows faster, leading to plumes that
approach the edge of the forward shock. We also discuss other geometrical
properties of the simulations, like the evolution of the contact discontinuity.Comment: 48 pages, 17 figures; Accepted for publication in Ap
Explosion models for thermonuclear supernovae resulting from different ignition conditions
We have explored in three dimensions the fate of a massive white dwarf as a
function of different initial locations of carbon ignition, with the aid of a
SPH code. The calculated models cover a variety of possibilities ranging from
the simultaneous ignition of the central volume of the star to the off-center
ignition in multiple scattered spots. In the former case, there are discussed
the possibility of a transition to a detonation when the mean density of the
nuclear flame decreases below 2x10**7 g cm**-3, and its consequences. In the
last case, the dependence of the results on the number of initial igniting
spots and the chance of some of these models to evolve to the pulsating delayed
detonation scenario are also outlined.Comment: 5 pages, 1 figure, proceedings of IAU Colloquium 192, 'Supernovae (10
years of SN1993J)', 22-26 April 2003, Valencia, Spai
- …
