57 research outputs found

    New PbSnTe heterojunction laser diode structures with improved performance

    Get PDF
    Several recent advances in the state-of-the-art of lead tin telluride double heterojunction laser diodes are summarized. Continuous Wave operation to 120 K and pulsed operation to 166 K with single, lowest order transverse mode emission to in excess of four times threshold at 80 K were achieved in buried stripe lasers fabricated by liquid phase epitaxy in the lattice-matched system, lead-tin telluride-lead telluride selenide. At the same time, liquid phase epitaxy was used to produce PbSnTe distributed feedback lasers with much broader continuous single mode tuning ranges than are available from Fabry-Perot lasers. The physics and philosophy behind these advances is as important as the structures and performance of the specific devices embodying the advances, particularly since structures are continually being evolved and the performance continues to be improved

    Lattice-matched Pb<inf>1-x</inf>Sn<inf>x</inf>Te/PbTe<inf>1-y</inf>Se<inf>y</inf>DH laser diodes operating to 166K

    No full text

    A high-gain directly modulated L-band microwave optical link

    No full text

    Interfaces for high-speed fiberoptics links

    No full text

    Integrated Quantum Well Laser/MESFET Transmitter Using Selective MOCVD Epitaxy and Ion Implantation

    Full text link
    The development of GaAlAs/GaAs integrated optoelectronic devices1 and circuits2 (IOEC) has been motivated by the potential of optical communications in high-density, high–data–rate interconnection of integrated circuits or signal processing systems. Recently, we have demonstrated a monolithic integration scheme which is compatible with the ion-implanted GaAs IC fabrication.3 Here, we report a high-performance integrated quantum well laser/MESFET transmitter using this integration scheme. The use of quantum well laser structures in the transmitter design is twofold. Low threshold can be obtained with a simple stripe geometry which facilitates integration, and second, quantum well lasers exhibit better dynamic characteristics than the conventional lasers under direct modulation.</jats:p
    corecore