35 research outputs found

    Analysis of the Metal Work Function Dependence of Charge Transfer in Contacted Graphene Nanoribbons

    Get PDF
    In this paper, the analysis of charge injection from metal to a contacted graphene nanoribbon (GNR) is developed by means of a scattering matrix approach. The charge transport, described by the Schrödinger equation in the 2D domain of the GNRs, is solved, together with the 3D Poisson equation for the potential distribution. Varying the work function of the metal contacted to the GNR, alters the so‐called “metal doping”, i.e., the amount of charge in the GNR. As easily expected, this in turn affects the I‐V characteristic of a GNR channel across two electrodes. Interesting effects appear as the contribution of GNR sub‐band is considered and included in the selfconsistent calculation

    Electrochemical Evaluation of the Hydroxyapatite Coating Synthesized on the AZ91 by Electrophoretic Deposition Route

    Full text link
    The hydroxyapatite layer was deposited on the commercial magnesium alloy of AZ91 by electrophoretic deposition route, and the corrosion behavior of applied layers was studied by polarization and electrochemical impedance spectroscopy at the Simulated Body Fluid (SBF) solution. The best corrosion resistance improvement was obtained for the sample synthesized at 40 V within 4 minutes. Also, the morphology of coated samples was studied by atomic force microscopy (AFM) and the surface parameters were measured. It could be concluded that the calculated values for surface parameters including surface roughness, maximum peak height, maximum pit depth, and maximum peak have a meaningful relationship with corrosion resistance
    corecore