3,340 research outputs found
Calibration of the Particle Density in Cellular-Automaton Models for Traffic Flow
We introduce density dependence of the cell size in cellular-automaton models
for traffic flow, which allows a more precise correspondence between real-world
phenomena and what observed in simulation. Also, we give an explicit
calibration of the particle density particularly for the asymmetric simple
exclusion process with some update rules. We thus find that the present method
is valid in that it reproduces a realistic flow-density diagram.Comment: 2 pages, 2 figure
Self-magnetic compensation and Exchange Bias in ferromagnetic Samarium systems
For Sm(3+) ions in a vast majority of metallic systems, the following
interesting scenario has been conjured up for long, namely, a magnetic lattice
of tiny self (spin-orbital) compensated 4f-moments exchange coupled (and phase
reversed) to the polarization in the conduction band. We report here the
identification of a self-compensation behavior in a variety of ferromagnetic Sm
intermetallics via the fingerprint of a shift in the magnetic hysteresis (M-H)
loop from the origin. Such an attribute, designated as exchange bias in the
context of ferromagnetic/antiferromagnetic multilayers, accords these compounds
a potential for niche applications in spintronics. We also present results on
magnetic compensation behavior on small Gd doping (2.5 atomic percent) in one
of the Sm ferromagnets (viz. SmCu(4)Pd). The doped system responds like a
pseudo-ferrimagnet and it displays a characteristic left-shifted linear M-H
plot for an antiferromagnet.Comment: 7 pages and 7 figure
Measuring errors in single qubit rotations by pulsed electron paramagnetic resonance
The ability to measure and reduce systematic errors in single-qubit logic
gates is crucial when evaluating quantum computing implementations. We describe
pulsed electron paramagnetic resonance (EPR) sequences that can be used to
measure precisely even small systematic errors in rotations of
electron-spin-based qubits. Using these sequences we obtain values for errors
in rotation angle and axis for single-qubit rotations using a commercial EPR
spectrometer. We conclude that errors in qubit operations by pulsed EPR are not
limiting factors in the implementation of electron-spin based quantum
computers
High Precision CTE-Measurement of SiC-100 for Cryogenic Space-Telescopes
We present the results of high precision measurements of the thermal
expansion of the sintered SiC, SiC-100, intended for use in cryogenic
space-telescopes, in which minimization of thermal deformation of the mirror is
critical and precise information of the thermal expansion is needed for the
telescope design. The temperature range of the measurements extends from room
temperature down to 10 K. Three samples, #1, #2, and #3 were
manufactured from blocks of SiC produced in different lots. The thermal
expansion of the samples was measured with a cryogenic dilatometer, consisting
of a laser interferometer, a cryostat, and a mechanical cooler. The typical
thermal expansion curve is presented using the 8th order polynomial of the
temperature. For the three samples, the coefficients of thermal expansion
(CTE), \bar{\alpha}_{#1}, \bar{\alpha}_{#2}, and \bar{\alpha}_{#3} were
derived for temperatures between 293 K and 10 K. The average and the dispersion
(1 rms) of these three CTEs are 0.816 and 0.002 (/K),
respectively. No significant difference was detected in the CTE of the three
samples from the different lots. Neither inhomogeneity nor anisotropy of the
CTE was observed. Based on the obtained CTE dispersion, we performed an
finite-element-method (FEM) analysis of the thermal deformation of a 3.5 m
diameter cryogenic mirror made of six SiC-100 segments. It was shown that the
present CTE measurement has a sufficient accuracy well enough for the design of
the 3.5 m cryogenic infrared telescope mission, the Space Infrared telescope
for Cosmology and Astrophysics (SPICA).Comment: in press, PASP. 21 pages, 4 figure
Optical conductivity of filled skutterudites
A simple tight-binding model is constructed for the description of the
electronic structure of some Ce-based filled skutterudite compounds showing an
energy gap or pseudogap behavior. Assuming band-diagonal electron interactions
on this tight-binding model, the optical conductivity spectrum is calculated by
applying the second-order self-consistent perturbation theory to treat the
electron correlation. The correlation effect is found to be of great importance
on the description of the temperature dependence of the optical conductivity.
The rapid disappearance of an optical gap with increasing temperature is
obtained as observed in the optical experiment for Ce-based filled-skutterudite
compounds.Comment: 6 pages, 7 figures, use jpsj2.cls, to appear in J. Phys. Soc. Jpn.
Vol.73, No.10 (2004
Visual onset expands subjective time
We report a distortion of subjective time perception in which the duration of a first interval is perceived to be longer than the succeeding interval of the same duration. The amount of time expansion depends on the onset type defining the first interval. When a stimulus appears abruptly, its duration is perceived to be longer than when it appears following a stationary array. The difference in the processing time for the stimulus onset and motion onset, measured as reaction times, agrees with the difference in time expansion. Our results suggest that initial transient responses for a visual onset serve as a temporal marker for time estimation, and a systematic change in the processing time for onsets affects perceived time
A new mechanism for electron spin echo envelope modulation
Electron spin echo envelope modulation (ESEEM) has been observed for the
first time from a coupled hetero-spin pair of electron and nucleus in liquid
solution. Previously, modulation effects in spin echo experiments have only
been described in liquid solutions for a coupled pair of homonuclear spins in
NMR or a pair of resonant electron spins in EPR. We observe low-frequency ESEEM
(26 and 52 kHz) due to a new mechanism present for any electron spin with S>1/2
that is hyperfine coupled to a nuclear spin. In our case these are electron
spin (S=3/2) and nuclear spin (I=1) in the endohedral fullerene N@C60. The
modulation is shown to arise from second order effects in the isotropic
hyperfine coupling of an electron and 14N nucleus.Comment: 15 pages, 4 figure
What is "system": the information-theoretic arguments
The problem of "what is 'system'?" is in the very foundations of modern
quantum mechanics. Here, we point out the interest in this topic in the
information-theoretic context. E.g., we point out the possibility to manipulate
a pair of mutually non-interacting, non-entangled systems to employ
entanglement of the newly defined '(sub)systems' consisting the one and the
same composite system. Given the different divisions of a composite system into
"subsystems", the Hamiltonian of the system may perform in general
non-equivalent quantum computations. Redefinition of "subsystems" of a
composite system may be regarded as a method for avoiding decoherence in the
quantum hardware. In principle, all the notions refer to a composite system as
simple as the hydrogen atom.Comment: 13 pages, no figure
Mesoscopic circuits with charge discreteness:quantum transmission lines
We propose a quantum Hamiltonian for a transmission line with charge
discreteness. The periodic line is composed of an inductance and a capacitance
per cell. In every cell the charge operator satisfies a nonlinear equation of
motion because of the discreteness of the charge. In the basis of one-energy
per site, the spectrum can be calculated explicitly. We consider briefly the
incorporation of electrical resistance in the line.Comment: 11 pages. 0 figures. Will be published in Phys.Rev.
- âŠ