323 research outputs found

    U-drawing of Fortiform 1050 third generation steels. Numerical and experimental results

    Get PDF
    Elasto–plastic behavior of the third generation Fortiform 1050 steel has been analysed using cyclic tension–compression tests. At the same time, the pseudo elastic modulus evolution with plastic strain was analysed using cyclic loading and unloading tests. From the experiments, it was found that the cyclic behavior of the steel is strongly kinematic and elastic modulus decrease with plastic strain is relevant for numerical modelling. In order to numerically analyse a U-Drawing process, strip drawing tests have been carried out at different contact pressures and Filzek model has been used to fit the experimental data and implement a pressure dependent friction law in Autoform software. Finally, numerical predictions of springback have been compared with the experimentally ones obtained using a sensorized UDrawing tooling. Different material and contact models have been examined and most influencing parameters have been identified to model the forming of these new steels

    Investigation of translocation, DNA unwinding, and protein displacement by NS3h, the helicase domain from the Hepatitis C virus helicase

    Get PDF
    Helicases are motor proteins that are involved in DNA and RNA metabolism, replication, recombination, transcription and repair. The motors are powered by ATP binding and hydrolysis. Hepatitis C virus encodes a helicase called non-structural protein (NS3). NS3 possesses protease and helicase activities on its N-terminal and C-terminal domains respectively. The helicase domain of NS3 protein is referred as NS3h. In vitro, NS3h catalyzes RNA and DNA unwinding in a 3’ to -5’ direction. The directionality for unwinding is thought to arise in part from the enzyme's ability to translocate along DNA, but translocation has not been shown explicitly. We examined the DNA translocase activity of NS3h by using single-stranded oligonucleotide substrates containing a fluorescent probe on the 5’ end. NS3h can bind to the ssDNA and in the presence of ATP, move towards the 5’-end. When the enzyme encounters the fluorescent probe, a fluorescence change is observed that allows translocation to be characterized. Under conditions that favor binding of one NS3h per DNA substrate (100 nM NS3h, 200 nM oligonucleotide) we find that NS3h translocates on ssDNA at a rate of 46 ± 5 nt s−1 and that it can move for 230 ± 60 nt before dissociating from the DNA. The translocase activity of some helicases is responsible for displacing proteins that are bound to DNA. We studied protein displacement by using a ssDNA oligonucleotide covalently linked to biotin on the 5’-end. Upon addition of streptavidin, a ‘protein-block’ was placed in the pathway of the helicase. Interestingly, NS3h was unable to displace streptavidin from the end of the oligonucleotide, despite its ability to translocate along the DNA. The DNA unwinding activity of NS3h was examined using a 22 bp duplex DNA substrate under conditions that were identical to those used to study translocation. NS3h exhibited little or no DNA unwinding under single cycle conditions, supporting the conclusion that NS3h is a relatively poor helicase in its monomeric form, as has been reported. In summary, NS3h translocates on ssDNA as a monomer, but the translocase activity does not correspond to comparable DNA unwinding activity or protein-displacement activity under identical conditions

    Timescales of Massive Human Entrainment

    Get PDF
    The past two decades have seen an upsurge of interest in the collective behaviors of complex systems composed of many agents entrained to each other and to external events. In this paper, we extend concepts of entrainment to the dynamics of human collective attention. We conducted a detailed investigation of the unfolding of human entrainment - as expressed by the content and patterns of hundreds of thousands of messages on Twitter - during the 2012 US presidential debates. By time locking these data sources, we quantify the impact of the unfolding debate on human attention. We show that collective social behavior covaries second-by-second to the interactional dynamics of the debates: A candidate speaking induces rapid increases in mentions of his name on social media and decreases in mentions of the other candidate. Moreover, interruptions by an interlocutor increase the attention received. We also highlight a distinct time scale for the impact of salient moments in the debate: Mentions in social media start within 5-10 seconds after the moment; peak at approximately one minute; and slowly decay in a consistent fashion across well-known events during the debates. Finally, we show that public attention after an initial burst slowly decays through the course of the debates. Thus we demonstrate that large-scale human entrainment may hold across a number of distinct scales, in an exquisitely time-locked fashion. The methods and results pave the way for careful study of the dynamics and mechanisms of large-scale human entrainment.Comment: 20 pages, 7 figures, 6 tables, 4 supplementary figures. 2nd version revised according to peer reviewers' comments: more detailed explanation of the methods, and grounding of the hypothese

    Use of Risk Models to Predict Death in the Next Year Among Individual Ambulatory Patients With Heart Failure

    Get PDF
    Importance: The clinical practice guidelines for heart failure recommend the use of validated risk models to estimate prognosis. Understanding how well models identify individuals who will die in the next year informs decision making for advanced treatments and hospice. Objective: To quantify how risk models calculated in routine practice estimate more than 50% 1-year mortality among ambulatory patients with heart failure who die in the subsequent year. Design, Setting, and Participants: Ambulatory adults with heart failure from 3 integrated health systems were enrolled between 2005 and 2008. The probability of death was estimated using the Seattle Heart Failure Model (SHFM) and the Meta-Analysis Global Group in Chronic Heart Failure (MAGGIC) risk calculator. Baseline covariates were collected from electronic health records. Missing covariates were imputed. Estimated mortality was compared with actual mortality at both population and individual levels. Main Outcomes and Measures: One-year mortality. Results: Among 10930 patients with heart failure, the median age was 77 years, and 48.0% of these patients were female. In the year after study enrollment, 1661 patients died (15.9% by life-table analysis). At the population level, 1-year predicted mortality among the cohort was 9.7% for the SHFM (C statistic of 0.66) and 17.5% for the MAGGIC risk calculator (C statistic of 0.69). At the individual level, the SHFM predicted a more than 50% probability of dying in the next year for 8 of the 1661 patients who died (sensitivity for 1-year death was 0.5%) and for 5 patients who lived at least a year (positive predictive value, 61.5%). The MAGGIC risk calculator predicted a more than 50% probability of dying in the next year for 52 of the 1661 patients who died (sensitivity, 3.1%) and for 63 patients who lived at least a year (positive predictive value, 45.2%). Conversely, the SHFM estimated that 8496 patients (77.8%) had a less than 15% probability of dying at 1 year, yet this lower-risk end of the score range captured nearly two-thirds of deaths (n = 997); similarly, the MAGGIC risk calculator estimated a probability of dying of less than 25% for the majority of patients who died at 1 year (n = 914). Conclusions and Relevance: Although heart failure risk models perform reasonably well at the population level, they do not reliably predict which individual patients will die in the next year

    Defining Advance Care Planning for Adults: A Consensus Definition From a Multidisciplinary Delphi Panel

    Get PDF
    Despite increasing interest in advance care planning (ACP) and prior ACP descriptions, a consensus definition does not yet exist to guide clinical, research, and policy initiatives

    A boundary element analysis on the influence of Krc and e/d on the performance of cyclically loaded single pile in clay

    Get PDF
    The environment prevalent in oceans necessitates the piles supporting offshore structures to be designed against lateral cyclic loading initiated by wave action. Such quasi-static load reversal induces deterioration in the strength and stiffness of the soil-pile system, introducing progressive reduction in the bearing capacity associated with increased settlement of the pile foundation. To understand the effect of lateral cyclic load on axial response of single piles in soft clay, a numerical model was previously developed and validated by the author. Using the methodology, further analysis has been carried out to investigate how the variation in relative pilesoil stiffness and eccentricity effects the degradation of axial pile capacity due to the effect of lateral cyclic load. This paper presents a brief description of the methodology, analysis and interpretations of the theoretical results obtained from the further analysis and the relevant conclusions drawn there from
    • 

    corecore