1,134 research outputs found
Recommended from our members
Development of a calcium-based sorbent for hot gas cleanup. Semi-annual technical progress report, October 1, 1996--March 31, 1997
Work has started on the development of a superior calcium-based sorbent for use in hot gas cleanup in IGCC systems. The aim is to develop a sorbent which will remove H{sub 2}S and COS from hot coal gas and be capable of repeated loading and regeneration. Porous alumina pellets and other porous refractory materials will be impregnated with calcium to prepare sorbents for testing. A preliminary review of the literature suggests that such materials have not been investigated extensively for cleaning coal gas
Ethnicity, Job Search and Labor Market Reintegration of the Unemployed
This paper is based on recently collected and rich survey data of a representative sample of entrants into unemployment in Germany. Our data include a large number of migration variables, allowing us to adapt a recently developed concept of ethnic identity: the ethnosizer. To shed further light on the native-migrant differences in economic outcomes, we investigate the labor market reintegration, patterns of job search, and reservation wages across unemployed migrants and natives in Germany. Our results indicate that separated migrants have a relatively slow reintegration into the labor market. We explain this finding by arguing that this group exerts a relatively low search effort and that it has reservation wages which are moderate, yet still above the level which would imply similar employment probabilities as other groups of migrants
Application of Hansch’s Model to Capsaicinoids and Capsinoids: A Study Using the Quantitative Structure−Activity Relationship. A Novel Method for the Synthesis of Capsinoids
We describe a synthetic approach for two families of compounds, the capsaicinoids and capsinoids,
as part of a study of the quantitative relationship between structure and activity
Correlation dynamics between electrons and ions in the fragmentation of D molecules by short laser pulses
We studied the recollision dynamics between the electrons and D ions
following the tunneling ionization of D molecules in an intense short pulse
laser field. The returning electron collisionally excites the D ion to
excited electronic states from there D can dissociate or be further
ionized by the laser field, resulting in D + D or D + D,
respectively. We modeled the fragmentation dynamics and calculated the
resulting kinetic energy spectrum of D to compare with recent experiments.
Since the recollision time is locked to the tunneling ionization time which
occurs only within fraction of an optical cycle, the peaks in the D kinetic
energy spectra provides a measure of the time when the recollision occurs. This
collision dynamics forms the basis of the molecular clock where the clock can
be read with attosecond precision, as first proposed by Corkum and coworkers.
By analyzing each of the elementary processes leading to the fragmentation
quantitatively, we identified how the molecular clock is to be read from the
measured kinetic energy spectra of D and what laser parameters be used in
order to measure the clock more accurately.Comment: 13 pages with 14 figure
Fabrication of photonic band gap crystal using microtransfer molded templates
We have proposed and demonstrated an economical technique to fabricate a three-dimensional layer-by-layer photonic band gapstructure in the infrared wavelengths. An organic polymer template structure, an inverse layer-by-layer photonic crystalstructure, is assembled using the microtransfer molding technique. This template is infiltrated with sol-gel or nanoparticle titanium oxide slurry, then later removed by heat treatment at a temperature range of 550–800 °C. This method can be extended to fabricatephotonic crystals operating at optical and ultraviolet frequencies
From Generative Models to Generative Passages: A Computational Approach to (Neuro) Phenomenology
This paper presents a version of neurophenomenology based on generative modelling techniques developed in computational neuroscience and biology. Our approach can be described as computational phenomenology because it applies methods originally developed in computational modelling to provide a formal model of the descriptions of lived experience in the phenomenological tradition of philosophy (e.g., the work of Edmund Husserl, Maurice Merleau-Ponty, etc.). The first section presents a brief review of the overall project to naturalize phenomenology. The second section presents and evaluates philosophical objections to that project and situates our version of computational phenomenology with respect to these projects. The third section reviews the generative modelling framework. The final section presents our approach in detail. We conclude by discussing how our approach differs from previous attempts to use generative modelling to help understand consciousness. In summary, we describe a version of computational phenomenology which uses generative modelling to construct a computational model of the inferential or interpretive processes that best explain this or that kind of lived experience
Recommended from our members
Development of a Calicum-Based Sorbent for Hot Gas Cleanup.
Further review of the technical literature has provided additional information which will support the development of a superior calcium-based sorbent for hot gas cleanup in IGCC systems. Two general methods of sorbent preparation are being investigated. One method involves impregnating a porous refractory substrate with calcium while another method involves pelletizing lime or other calcium containing materials with a suitable binder. Several potential substrates, which are made of alumina and are commercially available, have been characterized by various methods. The surface area and apparent density of the materials have been measured, and it has been shown that some of the high surface area materials (i.e., 200-400 m{sub 2}/g) undergo a large decrease in surface area when heated to higher temperatures. Some of the lower surface area materials (i.e., 1-30 m{sub 2}/g) have been successfully impregnated with calcium by soaking them in a calcium nitrate solution and then heat treating them to decompose the nitrate. Potentially useful sorbents have also been prepared by pelletizing type I Portland cement and mixtures of cement and lime
- …