384 research outputs found

    Detection of lensing substructure using ALMA observations of the dusty galaxy SDP.81

    Full text link
    We study the abundance of substructure in the matter density near galaxies using ALMA Science Verification observations of the strong lensing system SDP.81. We present a method to measure the abundance of subhalos around galaxies using interferometric observations of gravitational lenses. Using simulated ALMA observations, we explore the effects of various systematics, including antenna phase errors and source priors, and show how such errors may be measured or marginalized. We apply our formalism to ALMA observations of SDP.81. We find evidence for the presence of a M=108.96±0.12MM=10^{8.96\pm 0.12} M_{\odot} subhalo near one of the images, with a significance of 6.9σ6.9\sigma in a joint fit to data from bands 6 and 7; the effect of the subhalo is also detected in both bands individually. We also derive constraints on the abundance of dark matter subhalos down to M2×107MM\sim 2\times 10^7 M_{\odot}, pushing down to the mass regime of the smallest detected satellites in the Local Group, where there are significant discrepancies between the observed population of luminous galaxies and predicted dark matter subhalos. We find hints of additional substructure, warranting further study using the full SDP.81 dataset (including, for example, the spectroscopic imaging of the lensed carbon monoxide emission). We compare the results of this search to the predictions of Λ\LambdaCDM halos, and find that given current uncertainties in the host halo properties of SDP.81, our measurements of substructure are consistent with theoretical expectations. Observations of larger samples of gravitational lenses with ALMA should be able to improve the constraints on the abundance of galactic substructure.Comment: 18 pages, 13 figures, Comments are welcom

    Accelerated expansion from ghost-free bigravity: a statistical analysis with improved generality

    Full text link
    We study the background cosmology of the ghost-free, bimetric theory of gravity. We perform an extensive statistical analysis of the model using both frequentist and Bayesian frameworks and employ the constraints on the expansion history of the Universe from the observations of supernovae, the cosmic microwave background and the large scale structure to estimate the model's parameters and test the goodness of the fits. We explore the parameter space of the model with nested sampling to find the best-fit chi-square, obtain the Bayesian evidence, and compute the marginalized posteriors and mean likelihoods. We mainly focus on a class of sub-models with no explicit cosmological constant (or vacuum energy) term to assess the ability of the theory to dynamically cause a late-time accelerated expansion. The model behaves as standard gravity without a cosmological constant at early times, with an emergent extra contribution to the energy density that converges to a cosmological constant in the far future. The model can in most cases yield very good fits and is in perfect agreement with the data. This is because many points in the parameter space of the model exist that give rise to time-evolution equations that are effectively very similar to those of the Λ\LambdaCDM. This similarity makes the model compatible with observations as in the Λ\LambdaCDM case, at least at the background level. Even though our results indicate a slightly better fit for the Λ\LambdaCDM concordance model in terms of the pp-value and evidence, none of the models is statistically preferred to the other. However, the parameters of the bigravity model are in general degenerate. A similar but perturbative analysis of the model as well as more data will be required to break the degeneracies and constrain the parameters, in case the model will still be viable compared to the Λ\LambdaCDM.Comment: 42 pages, 9 figures; typos corrected in equations (2.12), (2.13), (3.7), (3.8) and (3.9); more discussions added (footnotes 5, 8, 10 and 13) and abstract, sections 4.2, 4.3 and 5 (conclusions) modified in response to referee's comments; references added; acknowledgements modified; all results completely unchanged; matches version accepted for publication in JHE

    The Universe is not statistically isotropic

    Full text link
    The standard cosmological model predicts statistically isotropic cosmic microwave background (CMB) fluctuations. However, several summary statistics of CMB isotropy have anomalous values, including: the low level of large-angle temperature correlations, S1/2S_{1/2}; the excess power in odd versus even low-\ell multipoles, RTTR^{TT}; the (low) variance of large-scale temperature anisotropies in the ecliptic north, but not the south, σ162\sigma^2_{16}; and the alignment and planarity of the quadrupole and octopole of temperature, SQOS_{QO}. Individually, their low pp-values are weak evidence for violation of statistical isotropy. The correlations of the tail values of these statistics have not to this point been studied. We show that the joint probability of all four of these happening by chance in Λ\LambdaCDM is likely 3×108\leq3\times10^{-8}. This constitutes more than 5σ5\sigma evidence for violation of statistical isotropy.Comment: 6 page

    The star formation history of BCGs to z = 1.8 from the SpARCS/SWIRE survey : evidence for significant in situ star formation at high redshift

    Get PDF
    We present the results of an MIPS-24 μm study of the brightest cluster galaxies (BCGs) of 535 high-redshift galaxy clusters. The clusters are drawn from the Spitzer Adaptation of the Red-Sequence Cluster Survey, which effectively provides a sample selected on total stellar mass, over 0.2 12) increases rapidly with redshift. Above z ∼ 1, an average of ∼20% of the sample have 24 μm inferred infrared luminosities of LIR > 1012 Lo, while the fraction below z ∼ 1 exhibiting such luminosities is <1%. The Spitzer-IRAC colors indicate the bulk of the 24 μm detected population is predominantly powered by star formation, with only 7/125 galaxies lying within the color region inhabited by active galactic nuclei (AGNs). Simple arguments limit the star formation activity to several hundred million years and this may therefore be indicative of the timescale for AGN feedback to halt the star formation. Below redshift z ∼ 1, there is not enough star formation to significantly contribute to the overall stellar mass of the BCG population, and therefore BCG growth is likely dominated by dry mergers. Above z ∼ 1, however, the inferred star formation would double the stellar mass of the BCGs and is comparable to the mass assembly predicted by simulations through dry mergers. We cannot yet constrain the process driving the star formation for the overall sample, though a single object studied in detail is consistent with a gas-rich merger.Peer reviewe

    Asymmetric magnetization reversal in exchange-biased hysteresis loops

    Get PDF
    This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics.Polarized neutron reflectometry is used to probe the in-plane projection of the net-magnetization vector M of polycrystalline Fe films exchange coupled to twinned (110) MnF2 or FeF2 antiferromagnetic (AF) layers. The magnetization reversal mechanism depends upon the orientation of the cooling field with respect to the twinned microstructure of the AF, and whether the applied field is increased to (or decreased from) a positive saturating field; i.e., the magnetization reversal is asymmetric. The reversal of the sample magnetization from one saturated state to the other occurs via either domain wall motion or magnetization rotation on opposite sides of the same hysteresis loop

    Two-stage magnetization reversal in exchange biased bilayers

    Get PDF
    MnF2/Fe bilayers exhibit asymmetric magnetization reversal that occurs by coherent rotation on one side of the loop and by nucleation and propagation of domain walls on the other side of the loop. Here, we show by polarized neutron reflectometry, magnetization, and magnetotransport measurements that for samples with good crystalline "quality" the rotation is a two-stage process, due to coherent rotation to a stable state perpendicular to the cooling field direction. The result is remarkably asymmetrically shaped hysteresis loops

    A survey-based assessment of how existing and potential electric vehicle owners perceive range anxiety

    Get PDF
    Electric vehicle (EV) owners enjoy many positive aspects when driving their cars, including low running costs and zero tailpipe gas emissions, which makes EVs a clean technology provided that they are sourced through renewable sources, e.g., biomass, solar power, or wind energy. However, their driving behaviour is often negatively affected by the so-called range anxiety phenomenon, i.e., a concern that an EV might not have enough driving range to reach the desired destination due to its limited battery size. The perception of range anxiety may also affect potential buyers in their decisions on whether to purchase an internal combustion engine vehicle as opposed to an EV. This paper investigates some factors that influence range anxiety through a comparative analysis of two target groups: (i) existing EV owners, and (ii) non-EV owners (i.e., potential EV owners). The specially crafted survey was used to collect range anxiety data from more than 200 participants. In particular, participants provided their perceptions on (i) the potential relationship between existing gas station infrastructure and the desired EV charging station infrastructure, and (ii) the potential relationship between range anxiety and two influencing variables, namely the current state of charge and remaining range. Concerning the existing gas station infrastructure, evidence suggests that both target groups think that the distances between gas stations could be increased. Moreover, our analysis shows that the desired distances between charging stations correspond to the distances between the existing gas stations, which indicates that both EV owners and non-EV owners have a common view on the optimal gas station and charging station topology. Furthermore, we find that the type of settlement (urban vs rural) influences preferred distances, where both target groups living in cities desire shorter distances, and that non-EV owners, as opposed to EV owners, are more prone to be affected by the state of charge and remaining range. Quantitatively, we are able to define a measure for range anxiety, which is connected with the preferred distance between two neighbouring charging stations. Throughout our analyses, we find that the mean preferred distance between two neighbouring charging stations is 7 km, but this value significantly differs based on the settlement type of a (potential) EV owner
    corecore