2,431 research outputs found

    Modelling of the 10-micrometer natural laser emission from the mesospheres of Mars and Venus

    Get PDF
    The NLTE radiative transfer problem is solved to obtain the 00 deg 1 vibrational state population. This model successfully reproduces the existing center-to-limb observations, although higher spatial resolution observations are needed for a definitive test. The model also predicts total fluxes which are close to the observed values. The strength of the emission is predicted to be closely related to the instantaneous near-IR solar heating rate

    Thermal bifurcation in the upper solar photosphere inferred from heterodyne spectroscopy of OH rotational lines

    Get PDF
    Low noise high spectral resolution observations of two pure rotation transitions of OH from the solar photosphere were obtained. The observations were obtained using the technique of optically null-balanced infrared heterodyne spectroscopy, and consist of center-to-limb line profiles of a v=1 and a v=0 transition near 12 microns. These lines should be formed in local thermodynamic equilibrium (LTE), and are diagnostics of the thermal structure of the upper photosphere. The v=0 R22 (24.5)e line strengthens at the solar limb, in contradiction to the predictions of current one dimensional photospheric models. Data for this line support a two dimensional model in which horizontal thermal fluctuations of order + or - 800K occur in the region Tau (sub 5000) approximately .001 to .01. This thermal bifurcation may be maintained by the presence of magnetic flux tubes, and may be related to the solar limb extensions observed in the 30 to 200 micron region

    Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands

    Get PDF
    We find that a theoretical fit to all the HD 209458b data at secondary eclipse requires that the dayside atmosphere of HD 209458b have a thermal inversion and a stratosphere. This inversion is caused by the capture of optical stellar flux by an absorber of uncertain origin that resides at altitude. One consequence of stratospheric heating and temperature inversion is the flipping of water absorption features into emission features from the near- to the mid-infrared and we see evidence of such a water emission feature in the recent HD 209458b IRAC data of Knutson et al. In addition, an upper-atmosphere optical absorber may help explain both the weaker-than-expected Na D feature seen in transit and the fact that the transit radius at 24 μ\mum is smaller than the corresponding radius in the optical. Moreover, it may be a factor in why HD 209458b's optical transit radius is as large as it is. We speculate on the nature of this absorber and the planets whose atmospheres may, or may not, be affected by its presence.Comment: Accepted to the Astrophysical Journal Letters on August 28, 2007, six pages in emulateapj forma

    Is there any chlorine monoxide in the stratosphere?

    Get PDF
    A ground based search for the 856.50137/cm R(9.5) and for the 859.76765 R(12.5) transitions of stratospheric (Cl-35)O was made in the solar absorption mode using an infrared heterodyne spectrometer. Lines due to stratospheric HNO3 and tropospheric OCS were detected, at about 0.3% absorption levels. The expected lines of ClO in this same region were not detected, even though the optical depth of the ClO lines should be on the order of 0.2% using currently accepted ClO abundances. These infrared measurements suggest that stratospheric ClO is at least a factor of 7 less abundant than is indicated by indirect in situ fluorescence measurements, and the upper limit of 2.4x10 to the 13th power molecules/sq cm to the integrated column density of ClO is a factor of over 4 less than is indicted by microwave measurements. Results imply that the release of fluorocarbon precursors of ClO may be significantly less important for the destruction of stratospheric ozone than was previously thought

    Observations of the 10 micrometer natural laser emission from the mesospheres of Mars and Venus

    Get PDF
    Observations of the total flux and center to limb dependence of the nonthermal emission occurring in the cores of the 9.4 and 10.4 micrometers CO2 bands on Mars are compared to a theoretical model based on this mechanism. The model successfully reproduces the observed center to limb dependence of this emission, to within the limits imposed by the spatial resolution of the observations of Mars and Venus. The observed flux from Mars agrees closely with the prediction of the model; the flux observed from Venus is 74% of the flux predicted by the model. This emission is used to obtain the kinetic temperatures of the Martian and Venusian mesospheres. For Mars near 70 km altitude, a rotational temperature analysis using five lines gives T = 135 + or - 20 K. The frequency width of the emission is also analyzed to derive a temperature of 126 + or - 6 K. In the case of the Venusian mesosphere near 109 km, the frequency width of the emission gives T = 204 + or - 10 K

    Influence of Sulfur-Containing Diamino Acid Structure on Covalently Crosslinked Copolypeptide Hydrogels.

    Get PDF
    Biologically occurring non-canonical di-α-amino acids were converted into new di-N-carboxyanhydride (di-NCA) monomers in reasonable yields with high purity. Five different di-NCAs were separately copolymerized with tert-butyl-l-glutamate NCA to obtain covalently crosslinked copolypeptides capable of forming hydrogels with varying crosslinker density. Comparison of hydrogel properties with residue structure revealed that different di-α-amino acids were not equivalent in crosslink formation. Notably, l-cystine was found to produce significantly weaker hydrogels compared to l-homocystine, l-cystathionine, and l-lanthionine, suggesting that l-cystine may be a sub-optimal choice of di-α-amino acid for preparation of copolypeptide networks. The di-α-amino acid crosslinkers also provided different chemical stability, where disulfide crosslinks were readily degraded by reduction, and thioether crosslinks were stable against reduction. This difference in response may provide a means to fine tune the reduction sensitivity of polypeptide biomaterial networks

    The phase-dependent Infrared brightness of the extrasolar planet upsilon Andromedae b

    Full text link
    The star upsilon Andromeda is orbited by three known planets, the innermost of which has an orbital period of 4.617 days and a mass at least 0.69 that of Jupiter. This planet is close enough to its host star that the radiation it absorbs overwhelms its internal heat losses. Here we present the 24 micron light curve of this system, obtained with the Spitzer Space Telescope. It shows a clear variation in phase with the orbital motion of the innermost planet. This is the first demonstration that such planets possess distinct hot substellar (day) and cold antistellar (night) faces.Comment: "Director's cut" of paper to appear in Science, 27 October, 200

    The Importance of Phase in Nulling Interferometry and a Three Telescope Closure-Phase Nulling Interferometer Concept

    Full text link
    We discuss the theory of the Bracewell nulling interferometer and explicitly demonstrate that the phase of the "white light" null fringe is the same as the phase of the bright output from an ordinary stellar interferometer. As a consequence a "closure phase" exists for a nulling interferometer with three or more telescopes. We calculate the phase offset as a function of baseline length for an Earth-like planet around the Sun at 10 pc, with a contrast ratio of 10610^{-6} at 10 μ\mum. The magnitude of the phase due to the planet is 106\sim 10^{-6} radians, assuming the star is at the phase center of the array. Although this is small, this phase may be observable in a three-telescope nulling interferometer that measures the closure phase. We propose a simple non-redundant three-telescope nulling interferometer that can perform this measurement. This configuration is expected to have improved characteristics compared to other nulling interferometer concepts, such as a relaxation of pathlength tolerances, through the use of the "ratio of wavelengths" technique, a closure phase, and better discrimination between exodiacal dust and planets

    Molecular Signatures in the Near Infrared Dayside Spectrum of HD 189733b

    Get PDF
    We have measured the dayside spectrum of HD 189733b between 1.5 and 2.5 microns using the NICMOS instrument on the Hubble Space Telescope. The emergent spectrum contains significant modulation, which we attribute to the presence of molecular bands seen in absorption. We find that water (H2O), carbon monoxide (CO), and carbon dioxide (CO2) are needed to explain the observations, and we are able to estimate the mixing ratios for these molecules. We also find temperature decreases with altitude in the ~0.01 < P < ~1 bar region of the dayside near-infrared photosphere and set an upper limit to the dayside abundance of methane (CH4) at these pressures.Comment: 13 pages, 3 figures. accepted in Astrophysical Journal Letter
    corecore