380 research outputs found

    Inaccuracy of Density Functional Theory Calculations for Dihydrogen Binding Energetics onto Ca Cation Centers

    Get PDF
    We investigate the mechanism of dihydrogen adsorption onto Ca cation centers, which has been the significant focus of recent research for hydrogen storage. We particularly concentrate on reliability of commonly used density-functional theories, in comparison with correlated wave function theories. It is shown that, irrespective of the chosen exchange-correlation potentials, density-functional theories result in unphysical binding of H2 molecules onto Ca1+ system. This suggests that several previous publications could contain a serious overestimation of storage capacity at least in part of their results.open262

    Intersecting D-branes in Type IIB Plane Wave Background

    Full text link
    We study intersecting D-branes in a type IIB plane wave background using Green-Schwarz worldsheet formulation. We consider all possible D±D_\pm-branes intersecting at angles in the plane wave background and identify their residual supersymmetries. We find, in particular, that DD±D_\mp - D_\pm brane intersections preserve no supersymmetry. We also present the explicit worldsheet expressions of conserved supercharges and their supersymmetry algebras.Comment: 32 pages, 2 tables; Corrected typos, to appear in Phys. Rev.

    KMT-2016-BLG-1107: A New Hollywood-Planet Close/Wide Degeneracy

    Get PDF
    We show that microlensing event KMT-2016-BLG-1107 displays a new type of degeneracy between wide-binary and close-binary Hollywood events in which a giant-star source envelops the planetary caustic. The planetary anomaly takes the form of a smooth, two-day "bump" far out on the falling wing of the light curve, which can be interpreted either as the source completely enveloping a minor-image caustic due to a close companion with mass ratio q=0.036q=0.036, or partially enveloping a major-image caustic due to a wide companion with q=0.004q=0.004. The best estimates of the companion masses are both in the planetary regime (3.31.8+3.5Mjup3.3^{+3.5}_{-1.8}\,M_{\rm jup} and 0.0900.037+0.096Mjup0.090^{+0.096}_{-0.037}\,M_{\rm jup}) but differ by an even larger factor than the mass ratios due to different inferred host masses. We show that the two solutions can be distinguished by high-resolution imaging at first light on next-generation ("30m") telescopes. We provide analytic guidance to understand the conditions under which this new type of degeneracy can appear.Comment: 23 pages, 7 figures, accepted for publication in A

    KMT-2018-BLG-1990Lb: A Nearby Jovian Planet From A Low-Cadence Microlensing Field

    Get PDF
    We report the discovery and characterization of KMT-2018-BLG-1990Lb, a Jovian planet (mp=0.570.25+0.79MJ)(m_p=0.57_{-0.25}^{+0.79}\,M_J) orbiting a late M dwarf (M=0.140.06+0.20M)(M=0.14_{-0.06}^{+0.20}\,M_\odot), at a distance (D_L=1.23_{-0.43}^{+1.06}\,\kpc), and projected at 2.6±0.62.6\pm 0.6 times the snow line distance, i.e., a_{\rm snow}\equiv 2.7\,\au (M/M_\odot), This is the second Jovian planet discovered by KMTNet in its low cadence (0.4hr10.4\,{\rm hr}^{-1}) fields, demonstrating that this population will be well characterized based on survey-only microlensing data.Comment: 24 pages, 7 figures, 4 table

    KMT-2018-BLG-1292: A Super-Jovian Microlens Planet in the Galactic Plane

    Get PDF
    We report the discovery of KMT-2018-BLG-1292Lb, a super-Jovian Mplanet=4.5±1.3MJM_{\rm planet} = 4.5\pm 1.3\,M_J planet orbiting an F or G dwarf Mhost=1.5±0.4MM_{\rm host} = 1.5\pm 0.4\,M_\odot, which lies physically within {\cal O}(10\,\pc) of the Galactic plane. The source star is a heavily extincted AI5.2A_I\sim 5.2 luminous giant that has the lowest Galactic latitude, b=0.28b=-0.28^\circ, of any planetary microlensing event. The relatively blue blended light is almost certainly either the host or its binary companion, with the first explanation being substantially more likely. This blend dominates the light at II band and completely dominates at RR and VV bands. Hence, the lens system can be probed by follow-up observations immediately, i.e., long before the lens system and the source separate due to their relative proper motion. The system is well characterized despite the low cadence Γ=0.15\Gamma=0.15--0.20hr10.20\,{\rm hr^{-1}} of observations and short viewing windows near the end of the bulge season. This suggests that optical microlensing planet searches can be extended to the Galactic plane at relatively modest cost.Comment: 35 pages, 3 Tables, 8 figure

    SIRT2 Maintains Genome Integrity and Suppresses Tumorigenesis Through Regulating APC/C Activity

    Get PDF
    Members of sirtuin family regulate multiple critical biological processes, yet their role in carcinogenesis remains controversial. To investigate the physiological functions of SIRT2 in development and tumorigenesis, we disrupted Sirt2 in mice. We demonstrated that SIRT2 regulates the anaphase-promoting complex/cyclosome activity through deacetylation of its coactivators, APC(CDH1) and CDC20. SIRT2 deficiency caused increased levels of mitotic regulators, including Aurora-A and -B that direct centrosome amplification, aneuploidy, and mitotic cell death. Sirt2-deficient mice develop gender-specific tumorigenesis, with females primarily developing mammary tumors, and males developing more hepatocellular carcinoma (HCC). Human breast cancers and HCC samples exhibited reduced SIRT2 levels compared with normal tissues. These data demonstrate that SIRT2 is a tumor suppressor through its role in regulating mitosis and genome integrity

    OGLE-2018-BLG-0532Lb: Cold Neptune With Possible Jovian Sibling

    Get PDF
    We report the discovery of the planet OGLE-2018-BLG-0532Lb, with very obvious signatures in the light curve that lead to an estimate of the planet-host mass ratio q=Mplanet/Mhost1×104q=M_{\rm planet}/M_{\rm host}\simeq 1\times10^{-4}. Although there are no obvious systematic residuals to this double-lens/single-source (2L1S) fit, we find that χ2\chi^2 can be significantly improved by adding either a third lens (3L1S, Δχ2=81\Delta\chi^2=81) or second source (2L2S, Δχ2=65\Delta\chi^2=65) to the lens-source geometry. After thorough investigation, we conclude that we cannot decisively distinguish between these two scenarios and therefore focus on the robustly-detected planet. However, given the possible presence of a second planet, we investigate to what degree and with what probability such additional planets may affect seemingly single-planet light curves. Our best estimates for the properties of the lens star and the secure planet are: a host mass M0.25MM\sim 0.25\,M_\odot, system distance DL1D_L\sim 1\,kpc and planet mass mp,1=8Mm_{p,1}= 8\,M_\oplus with projected separation a1,=1.4a_{1,\perp}=1.4\,au. However, there is a relatively bright I=18.6I=18.6 (and also relatively blue) star projected within <50<50\,mas of the lens, and if future high-resolution images show that this is coincident with the lens, then it is possible that it is the lens, in which case, the lens would be both more massive and more distant than the best-estimated values above.Comment: 48 pages, 9 figures, 7 table

    OGLE-2016-BLG-1227L: A Wide-separation Planet from a Very Short-timescale Microlensing Event

    Get PDF
    We present the analysis of the microlensing event OGLE-2016-BLG-1227. The light curve of this short-duration event appears to be a single-lens event affected by severe finite-source effects. Analysis of the light curve based on single-lens single-source (1L1S) modeling yields very small values of the event timescale, t_E ∼ 3.5 days, and the angular Einstein radius, θ_E ∼ 0.009 mas, making the lens a candidate of a free-floating planet. Close inspection reveals that the 1L1S solution leaves small residuals with amplitude ΔI ≲ 0.03 mag. We find that the residuals are explained by the existence of an additional widely-separated heavier lens component, indicating that the lens is a wide-separation planetary system rather than a free-floating planet. From Bayesian analysis, it is estimated that the planet has a mass of _p = 0.79^(+1.30)_(−0.39) M_J and it is orbiting a low-mass host star with a mass of M_(host) = 0.10+0.17−0.05 M_⊙ located with a projected separation of a_ = 3.4^(+2.1)_(−1.0) au. The planetary system is located in the Galactic bulge with a line-of-sight separation from the source star of D_(LS) = 1.21^(+0.96)_(−0.63) kpc. The event shows that there are a range of deviations in the signatures of host stars for apparently isolated planetary lensing events and that it is possible to identify a host even when a deviation is subtle
    corecore