650 research outputs found

    Use of biomarkers or echocardiography in pulmonary embolism: the Swiss Venous Thromboembolism Registry

    Get PDF
    Background: Cardiac biomarkers and echocardiography for assessing right ventricular function are recommended to risk stratify patients with acute non-massive pulmonary embolism (PE), but it remains unclear if these tests are performed systematically in daily practice. Design and methods: Overall, 587 patients with acute non-massive PE from 18 hospitals were enrolled in the Swiss Venous Thromboembolism Registry (SWIVTER): 178 (30%) neither had a biomarker test nor an echocardiographic evaluation, 196 (34%) had a biomarker test only, 47 (8%) had an echocardiogram only and 166 (28%) had both tests. Results: Among the 409 (70%) patients with biomarkers or echocardiography, 210 (51%) had at least one positive test and 67 (16%) had positive biomarkers and right ventricular dysfunction. The ICU admission rates were 5.1% without vs. 5.6% with testing (P = 0.78), and thrombolysis or embolectomy were performed in 2.8% vs. 4.9%, respectively (P = 0.25). In multivariate analysis, syncope [odds ratio (OR): 3.49, 95% confidence interval (CI): 1.20-10.15; P = 0.022], tachycardia (OR: 2.31, 95% CI: 1.37-3.91; P = 0.002) and increasing age (OR: 1.02; 95% CI: 1.01-1.04; P < 0.001) were associated with testing of cardiac risk; outpatient status at the time of PE diagnosis (OR: 2.24, 95% CI: 1.49-3.36; P < 0.001), cancer (OR: 1.81, 95% CI: 1.17-2.79; P = 0.008) and provoked PE (OR: 1.58, 95% CI: 1.05-2.40; P = 0.029) were associated with its absence. Conclusions: Although elderly patients and those with clinically severe PE were more likely to receive a biomarker test or an echocardiogram, these tools were used in only two-thirds of the patients with acute non-massive PE and rarely in combinatio

    Disorder effects in electronic structure of substituted transition metal compounds

    Get PDF
    Investigating LaNi(1-x)M(x)O3 (M = Mn and Fe), we identify a characteristic evolution of the spectral function with increasing disorder in presence of strong interaction effects across the metal-insulator transition. We discuss these results vis-a-vis existing theories of electronic structure in simultaneous presence of disorder and interaction.Comment: Revtex, 4 pages, 3 postscript figures (To appear in Phys. Rev. Lett

    Metal-insulator Crossover Behavior at the Surface of NiS_2

    Full text link
    We have performed a detailed high-resolution electron spectroscopic investigation of NiS2_2 and related Se-substituted compounds NiS2x_{2-x}Sex_x, which are known to be gapped insulators in the bulk at all temperatures. A large spectral weight at the Fermi energy of the room temperature spectrum, in conjunction with the extreme surface sensitivity of the experimental probe, however, suggests that the surface layer is metallic at 300 K. Interestingly, the evolution of the spectral function with decreasing temperature is characterized by a continuous depletion of the single-particle spectral weight at the Fermi energy and the development of a gap-like structure below a characteristic temperature, providing evidence for a metal-insulator crossover behavior at the surfaces of NiS2_2 and of related compounds. These results provide a consistent description of the unusual transport properties observed in these systems.Comment: 12 pages, 3 figure

    Scaling of the Conductivity with Temperature and Uniaxial Stress in Si:B at the Metal-Insulator Transition

    Full text link
    Using uniaxial stress to tune Si:B through the metal-insulator transition we find the conductivity at low temperatures shows an excellent fit to scaling with temperature and stress on both sides of the transition. The scaling functions yield the conductivity in the metallic and insulating phases, and allow a reliable determination of the temperature dependence in the critical regions on both sides of the transition

    Linear magnetoresistance in commercial n-type silicon due to inhomogeneous doping

    Full text link
    Free electron theory tells us that resistivity is independent of magnetic field. In fact, most observations match the semiclassical prediction of a magnetoresistance that is quadratic at low fields before saturating. However, a non-saturating linear magnetoresistance has been observed in exotic semiconductors such as silver chalcogenides, lightly-doped InSb, N-doped InAs, MnAs-GaAs composites, PrFeAsO, and epitaxial graphene. Here we report the observation of a large linear magnetoresistance in the ohmic regime in commonplace commercial n-type silicon wafer. It is well-described by a classical model of spatially fluctuating donor densities, and may be amplified by altering the aspect ratio of the sample to enhance current-jetting: increasing the width tenfold increased the magnetoresistance at 8 T from 445 % to 4707 % at 35 K. This physical picture may well offer insights into the large magnetoresistances recently observed in n-type and p-type Si in the non-ohmic regime.Comment: submitted to Nature Material

    Measurement of gamma p --> K+ Lambda and gamma p --> K+ Sigma0 at photon energies up to 2.6 GeV

    Full text link
    The reactions gamma p --> K+ Lambda and gamma p --> K+ Sigma0 were measured in the energy range from threshold up to a photon energy of 2.6 GeV. The data were taken with the SAPHIR detector at the electron stretcher facility, ELSA. Results on cross sections and hyperon polarizations are presented as a function of kaon production angle and photon energy. The total cross section for Lambda production rises steeply with energy close to threshold, whereas the Sigma0 cross section rises slowly to a maximum at about E_gamma = 1.45 GeV. Cross sections together with their angular decompositions into Legendre polynomials suggest contributions from resonance production for both reactions. In general, the induced polarization of Lambda has negative values in the kaon forward direction and positive values in the backward direction. The magnitude varies with energy. The polarization of Sigma0 follows a similar angular and energy dependence as that of Lambda, but with opposite sign.Comment: 21 pages, 25 figures, submitted to Eur. Phys. J.

    K^0 pi^0 Sigma^+ and K^*0 Sigma^+ photoproduction off the proton

    Full text link
    The exclusive reactions γpK0Σ+(1189)\gamma p \to K^{*0} \Sigma^+(1189) and γpK0π0Σ+(1189)\gamma p \to K^{0} \pi^{0}\Sigma^+(1189), leading to the p 4π0\pi^{0} final state, have been measured with a tagged photon beam for incident energies from threshold up to 2.5 GeV. The experiment has been performed at the tagged photon facility of the ELSA accelerator (Bonn). The Crystal Barrel and TAPS detectors were combined to a photon detector system of almost 4π\pi geometrical acceptance. Differential and total cross sections are reported. At energies close to the threshold, a flat angular distribution has been observed for the reaction γpK0π0Σ+\gamma p\to K^{0} \pi^{0}\Sigma^+ suggesting dominant s-channel production. Σ(1385)\Sigma^*(1385) and higher lying hyperon states have been observed. An enhancement in the forward direction in the angular distributions of the reaction γpK0Σ+\gamma p \to K^{*0}\Sigma^+ indicates a tt-channel exchange contribution to the reaction mechanism. The experimental data are in reasonable agreement with recent theoretical predictions.Comment: 11 pages, 13 figures, submitted to EPJ
    corecore