2,259 research outputs found
Scanner
An aerial vehicle rotating in gyroscopic fashion about one of its axes has an optical system which scans an area below the vehicle in determined relation to vehicle rotation. A sensing device is provided to sense the physical condition of the area of scan and optical means are associated to direct the physical intelligence received from the scan area to the sensing means. Means are provided to incrementally move the optical means through a series of steps to effect sequential line scan of the area being viewed keyed to the rotational rate of the vehicle
O stars effective temperature and HII regions ionization parameter gradients in the Galaxy
Extensive photoionization model grids are computed for single star HII
regions using stellar atmosphere models from the WM-basic code. Mid-IR emission
line intensities are predicted and diagnostic diagrams of [NeIII]/[NeII] and
[SIV]/[SIII] excitation ratio are build, taking into account the metallicities
of both the star and the HII region. The diagrams are used in conjunction with
galactic HII region observations obtained with the ISO Observatory to determine
the effective temperature Teff of the exciting O stars and the mean ionization
parameter U. Teff and U are found to increase and decrease, respectively, with
the metallicity of the HII region represented by the [Ne/Ne_sol] ratio. No
evidence is found for gradients of Teff or U with galactocentric distance Rgal.
The observed excitation sequence with Rgal is mainly due to the effect of the
metallicity gradient on the spectral ionizing shape, upon which the effect of
an increase in Teff with Z is superimposed. We show that not taking properly
into account the effect of metallicity on the ionizing shape of the stellar
atmosphere would lead to an apparent decrease of Teff with Z and an increase of
Teff with Rgal.Comment: Accepted in Ap
Registration of Heat Capacity Mapping Mission day and night images
Neither iterative registration, using drainage intersection maps for control, nor cross correlation techniques were satisfactory in registering day and night HCMM imagery. A procedure was developed which registers the image pairs by selecting control points and mapping the night thermal image to the daytime thermal and reflectance images using an affine transformation on a 1300 by 1100 pixel image. The resulting image registration is accurate to better than two pixels (RMS) and does not exhibit the significant misregistration that was noted in the temperature-difference and thermal-inertia products supplied by NASA. The affine transformation was determined using simple matrix arithmetic, a step that can be performed rapidly on a minicomputer
Scattered Lyman-alpha Radiation Around Sources Before Cosmological Reionization
The spectra of the first galaxies and quasars in the Universe should be
strongly absorbed shortward of their rest-frame Lyman-alpha wavelength by
neutral hydrogen (HI) in the intervening intergalactic medium. However, the
Lyman-alpha line photons emitted by these sources are not eliminated but rather
scatter until they redshift out of resonance and escape due to the Hubble
expansion of the surrounding intergalactic HI. We calculate the resulting
brightness distribution and the spectral shape of the diffuse Lyman-alpha line
emission around high redshift sources, before the intergalactic medium was
reionized. Typically, the Lyman-alpha photons emitted by a source at z=10
scatter over a characteristic angular radius of order 15 arcseconds around the
source and compose a line which is broadened and redshifted by about a thousand
km/s relative to the source. The scattered photons are highly polarized.
Detection of the diffuse Lyman-alpha halos around high redshift sources would
provide a unique tool for probing the neutral intergalactic medium before the
epoch of reionization. On sufficiently large scales where the Hubble flow is
smooth and the gas is neutral, the Lyman-alpha brightness distribution can be
used to determine the cosmological mass densities of baryons and matter.Comment: 21 pages, 5 Postscript figures, accepted by ApJ; figures 1--3
corrected; new section added on the detectability of Lyman alpha halos;
conclusions update
Density-Dependent Analysis of Nonequilibrium Paths Improves Free Energy Estimates II. A Feynman-Kac Formalism
The nonequilibrium fluctuation theorems have paved the way for estimating
equilibrium thermodynamic properties, such as free energy differences, using
trajectories from driven nonequilibrium processes. While many statistical
estimators may be derived from these identities, some are more efficient than
others. It has recently been suggested that trajectories sampled using a
particular time-dependent protocol for perturbing the Hamiltonian may be
analyzed with another one. Choosing an analysis protocol based on the
nonequilibrium density was empirically demonstrated to reduce the variance and
bias of free energy estimates. Here, we present an alternate mathematical
formalism for protocol postprocessing based on the Feynmac-Kac theorem. The
estimator that results from this formalism is demonstrated on a few
low-dimensional model systems. It is found to have reduced bias compared to
both the standard form of Jarzynski's equality and the previous protocol
postprocessing formalism.Comment: 21 pages, 5 figure
The hydration state of HO(aq)
The HO(aq) ion participates in myriad aqueous phase chemical processes of
biological and chemical interest. A molecularly valid description of its
hydration state, currently poorly understood, is a natural prerequisite to
modeling chemical transformations involving HO(aq). Here it is shown that
the statistical mechanical quasi-chemical theory of solutions predicts that
is the dominant inner shell coordination
structure for HO(aq) under standard conditions. Experimental observations
and other theoretical calculations are adduced to support this conclusion.
Hydration free energies of neutral combinations of simple cations with
HO(aq) are evaluated and agree well with experimental values.Comment: 10 pages, 1 figur
The 21cm Signature of the First Stars
We predict the 21-cm signature of the first metal-free stars. The soft X-rays
emitted by these stars penetrate the atomic medium around their host halos,
generating Lyman alpha photons that couple the spin and kinetic temperatures.
These creates a region we call the Lyman alpha sphere, visible in 21-cm against
the CMB, which is much larger than the HII region produced by the same star.
The spin and kinetic temperatures are strongly coupled before the X-rays can
substantially heat the medium, implying that a strong 21-cm absorption signal
from the adiabatically cooled gas in Hubble expansion around the star is
expected when the medium has not been heated previously. A central region of
emission from the gas heated by the soft X-rays is also present although with a
weaker signal than the absorption. The Lyman alpha sphere is a universal
signature that should be observed around any first star illuminating its
vicinity for the first time. The 21-cm radial profile of the Lyman alpha sphere
can be calculated as a function of the luminosity, spectrum and age of the
star. For a star of a few hundred solar masses and zero metallicity (as
expected for the first stars), the physical radius of the Lyman alpha sphere
can reach tens of kiloparsecs. The first metal-free stars should be strongly
clustered because of high cosmic biasing; this implies that the regions
producing a 21-cm absorption signal may contain more than one star and will
generally be irregular and not spherical, because of the complex distribution
of the gas. We discuss the feasiblity of detecting these Lyman alpha spheres,
which would be present at redshifts in the Cold Dark Matter model.
Their observation would represent a direct proof of the detection of a first
star.Comment: replaced with ApJ accepted version. Many minor revisions and
additional references, major results unchange
Inconsistency in Fermi's probability of the quantum states
We point out an important hidden inconsistency in Fermi's probability of the
quantum states that engendered inconsistent/inaccurate equations-of-state
extensively used in the literature to model nonideal plasma systems. The
importance of this amendment goes beyond rectifying our comprehension and
foundation of an important physical problem to influencing contemporary
research results.Comment: Accepted for Publicatio
Measuring the energy landscape roughness and the transition state location of biomolecules using single molecule mechanical unfolding experiments
Single molecule mechanical unfolding experiments are beginning to provide
profiles of the complex energy landscape of biomolecules. In order to obtain
reliable estimates of the energy landscape characteristics it is necessary to
combine the experimental measurements with sound theoretical models and
simulations. Here, we show how by using temperature as a variable in mechanical
unfolding of biomolecules in laser optical tweezer or AFM experiments the
roughness of the energy landscape can be measured without making any
assumptions about the underlying reaction oordinate. The efficacy of the
formalism is illustrated by reviewing experimental results that have directly
measured roughness in a protein-protein complex. The roughness model can also
be used to interpret experiments on forced-unfolding of proteins in which
temperature is varied. Estimates of other aspects of the energy landscape such
as free energy barriers or the transition state (TS) locations could depend on
the precise model used to analyze the experimental data. We illustrate the
inherent difficulties in obtaining the transition state location from loading
rate or force-dependent unfolding rates. Because the transition state moves as
the force or the loading rate is varied it is in general difficult to invert
the experimental data unless the curvature at the top of the one dimensional
free energy profile is large, i.e the barrier is sharp. The independence of the
TS location on force holds good only for brittle or hard biomolecules whereas
the TS location changes considerably if the molecule is soft or plastic. We
also comment on the usefulness of extension of the molecule as a surrogate
reaction coordinate especially in the context of force-quench refolding of
proteins and RNA.Comment: 44 pages, 7 figure
- …
