2,252 research outputs found
Convective instability and mass transport of diffusion layers in a Hele-Shaw geometry
We consider experimentally the instability and mass transport of a
porous-medium flow in a Hele-Shaw geometry. In an initially stable
configuration, a lighter fluid (water) is located over a heavier fluid
(propylene glycol). The fluids mix via diffusion with some regions of the
resulting mixture being heavier than either pure fluid. Density-driven
convection occurs with downward penetrating dense fingers that transport mass
much more effectively than diffusion alone. We investigate the initial
instability and the quasi steady state. The convective time and velocity
scales, finger width, wave number selection, and normalized mass transport are
determined for 6,000<Ra<90,000. The results have important implications for
determining the time scales and rates of dissolution trapping of carbon dioxide
in brine aquifers proposed as possible geologic repositories for sequestering
carbon dioxide.Comment: 4 page, 3 figure
Resolution of Nested Neuronal Representations Can Be Exponential in the Number of Neurons
Collective computation is typically polynomial in the number of computational elements, such as transistors or neurons, whether one considers the storage capacity of a memory device or the number of floating-point operations per second of a CPU. However, we show here that the capacity of a computational network to resolve real-valued signals of arbitrary dimensions can be exponential in N, even if the individual elements are noisy and unreliable. Nested, modular codes that achieve such high resolutions mirror the properties of grid cells in vertebrates, which underlie spatial navigation
Learned-Norm Pooling for Deep Feedforward and Recurrent Neural Networks
In this paper we propose and investigate a novel nonlinear unit, called
unit, for deep neural networks. The proposed unit receives signals from
several projections of a subset of units in the layer below and computes a
normalized norm. We notice two interesting interpretations of the
unit. First, the proposed unit can be understood as a generalization of a
number of conventional pooling operators such as average, root-mean-square and
max pooling widely used in, for instance, convolutional neural networks (CNN),
HMAX models and neocognitrons. Furthermore, the unit is, to a certain
degree, similar to the recently proposed maxout unit (Goodfellow et al., 2013)
which achieved the state-of-the-art object recognition results on a number of
benchmark datasets. Secondly, we provide a geometrical interpretation of the
activation function based on which we argue that the unit is more
efficient at representing complex, nonlinear separating boundaries. Each
unit defines a superelliptic boundary, with its exact shape defined by the
order . We claim that this makes it possible to model arbitrarily shaped,
curved boundaries more efficiently by combining a few units of different
orders. This insight justifies the need for learning different orders for each
unit in the model. We empirically evaluate the proposed units on a number
of datasets and show that multilayer perceptrons (MLP) consisting of the
units achieve the state-of-the-art results on a number of benchmark datasets.
Furthermore, we evaluate the proposed unit on the recently proposed deep
recurrent neural networks (RNN).Comment: ECML/PKDD 201
A Learning Framework for Morphological Operators using Counter-Harmonic Mean
We present a novel framework for learning morphological operators using
counter-harmonic mean. It combines concepts from morphology and convolutional
neural networks. A thorough experimental validation analyzes basic
morphological operators dilation and erosion, opening and closing, as well as
the much more complex top-hat transform, for which we report a real-world
application from the steel industry. Using online learning and stochastic
gradient descent, our system learns both the structuring element and the
composition of operators. It scales well to large datasets and online settings.Comment: Submitted to ISMM'1
Solvable model of a phase oscillator network on a circle with infinite-range Mexican-hat-type interaction
We describe a solvable model of a phase oscillator network on a circle with
infinite-range Mexican-hat-type interaction. We derive self-consistent
equations of the order parameters and obtain three non-trivial solutions
characterized by the rotation number. We also derive relevant characteristics
such as the location-dependent distributions of the resultant frequencies of
desynchronized oscillators. Simulation results closely agree with the
theoretical ones
Comprehensive analysis of preeclampsia-associated DNA methylation in the placenta
Background:A small number of recent reports have suggested that altered placental DNA methylation may be associated with early onset preeclampsia. It is important that further studies be undertaken to confirm and develop these findings. We therefore undertook a systematic analysis of DNA methylation patterns in placental tissue from 24 women with preeclampsia and 24 with uncomplicated pregnancy outcome
Observation of the lowest energy gamma-ray in any superdeformed nucleus : 196Bi
New results on the superdeformed Bi nucleus a re reported. We have
observed with the EUROBALL IV -ray spectrometer array a superdeformed
trans ition of 124 keV which is the lowest observed energy -ray in any
superdeformed nucleus. We have de velopped microscopic cranked
Hartree-Fock-Bogoliubov calculations using the SLy4 effective force and a
realistic surface p airing which strongly support the
([651]1/2[752]5/2) assignment of this su
perdeformed band
Founding quantum theory on the basis of consciousness
In the present work, quantum theory is founded on the framework of
consciousness, in contrast to earlier suggestions that consciousness might be
understood starting from quantum theory. The notion of streams of
consciousness, usually restricted to conscious beings, is extended to the
notion of a Universal/Global stream of conscious flow of ordered events. The
streams of conscious events which we experience constitute sub-streams of the
Universal stream. Our postulated ontological character of consciousness also
consists of an operator which acts on a state of potential consciousness to
create or modify the likelihoods for later events to occur and become part of
the Universal conscious flow. A generalized process of measurement-perception
is introduced, where the operation of consciousness brings into existence, from
a state of potentiality, the event in consciousness. This is mathematically
represented by (a) an operator acting on the state of potential-consciousness
before an actual event arises in consciousness and (b) the reflecting of the
result of this operation back onto the state of potential-consciousness for
comparison in order for the event to arise in consciousness. Beginning from our
postulated ontology that consciousness is primary and from the most elementary
conscious contents, such as perception of periodic change and motion, quantum
theory follows naturally as the description of the conscious experience.Comment: 41 pages, 3 figures. To be published in Foundations of Physics, Vol
36 (6) (June 2006), published online at
http://dx.doi.org/10.1007/s10701-006-9049-
Handwritten digit recognition by bio-inspired hierarchical networks
The human brain processes information showing learning and prediction
abilities but the underlying neuronal mechanisms still remain unknown.
Recently, many studies prove that neuronal networks are able of both
generalizations and associations of sensory inputs. In this paper, following a
set of neurophysiological evidences, we propose a learning framework with a
strong biological plausibility that mimics prominent functions of cortical
circuitries. We developed the Inductive Conceptual Network (ICN), that is a
hierarchical bio-inspired network, able to learn invariant patterns by
Variable-order Markov Models implemented in its nodes. The outputs of the
top-most node of ICN hierarchy, representing the highest input generalization,
allow for automatic classification of inputs. We found that the ICN clusterized
MNIST images with an error of 5.73% and USPS images with an error of 12.56%
- …
