263 research outputs found

    Doubly heavy hadrons and the domain of validity of doubly heavy diquark--anti-quark symmetry

    Get PDF
    In the limit of heavy quark masses going to infinity, a symmetry is known to emerge in QCD relating properties of hadrons with two heavy quarks to analogous states with one heavy anti-quark. A key question is whether the charm mass is heavy enough so that this symmetry is manifest in at least an approximate manner. The issue is crucial in attempting to understand the recent reports by the SELEX Collaboration of doubly charmed baryons. We argue on very general grounds that the charm quark mass is substantially too light for the symmetry to emerge automatically via colour coulombic interactions. However, the symmetry could emerge approximately depending on the dynamical details.Comment: 9 page

    Herschel-Bulkley rheology from lattice kinetic theory of soft-glassy materials

    Full text link
    We provide a clear evidence that a two species mesoscopic Lattice Boltzmann (LB) model with competing short-range attractive and mid-range repulsive interactions supports emergent Herschel-Bulkley (HB) rheology, i.e. a power-law dependence of the shear-stress as a function of the strain rate, beyond a given yield-stress threshold. This kinetic formulation supports a seamless transition from flowing to non-flowing behaviour, through a smooth tuning of the parameters governing the mesoscopic interactions between the two species. The present model may become a valuable computational tool for the investigation of the rheology of soft-glassy materials on scales of experimental interest.Comment: 5 figure

    On the Existence of Heavy Pentaquarks: The large Nc and Heavy Quark Limits and Beyond

    Full text link
    We present a very general argument that the analogue of a heavy pentaquark (a state with the quantum numbers of a baryon combined with an additional light quark and a heavy antiquark) must exist as a particle stable under strong interactions in the combined heavy quark and large Nc limits of QCD. Moreover, in the combined limit these heavy pentaquark states fill multiplets of SU(4)xO(8)xSU(2). We explore the question of whether corrections in the combined 1/Nc and 1/mQ expansions are sufficiently small to maintain this qualitative result. Since no model-independent way is known to answer this question, we use a class of ``realistic'' hadronic models in which a pentaquark can be formed via nucleon-heavy meson binding through a pion-exchange potential. These models have the virtue that they necessarily yield the correct behavior in the combined limit, and the long-distance parts of the interactions are model independent. If the long-distance attraction in these models were to predict bound states in a robust way (i.e., largely insensitive to the details of the short-range interaction), then one could safely conclude that heavy pentaquarks do exist. However, in practice the binding does depend very strongly on the details of the short-distance physics, suggesting that the real world is not sufficiently near the combined large Nc, mQ limit to use it as a reliable guide. Whether stable heavy pentaquarks exist remains an open question.Comment: 11 pages; references adde

    A sticky business: the status of the conjectured viscosity/entropy density bound

    Full text link
    There have been a number of forms of a conjecture that there is a universal lower bound on the ratio, eta/s, of the shear viscosity, eta, to entropy density, s, with several different domains of validity. We examine the various forms of the conjecture. We argue that a number of variants of the conjecture are not viable due to the existence of theoretically consistent counterexamples. We also note that much of the evidence in favor of a bound does not apply to the variants which have not yet been ruled out.Comment: 23 pages, 4 figures, added references, corrected typos, added subsection in response to Son's comments in arXiv:0709.465

    Bulk spectral function sum rule in QCD-like theories with a holographic dual

    Full text link
    We derive the sum rule for the spectral function of the stress-energy tensor in the bulk (uniform dilatation) channel in a general class of strongly coupled field theories. This class includes theories holographically dual to a theory of gravity coupled to a single scalar field, representing the operator of the scale anomaly. In the limit when the operator becomes marginal, the sum rule coincides with that in QCD. Using the holographic model, we verify explicitly the cancellation between large and small frequency contributions to the spectral integral required to satisfy the sum rule in such QCD-like theories.Comment: 16 pages, 2 figure

    Dressed spectral densities for heavy quark diffusion in holographic plasmas

    Full text link
    We analyze the large frequency behavior of the spectral densities that govern the generalized Langevin diffusion process for a heavy quark in the context of the gauge/gravity duality. The bare Langevin correlators obtained from the trailing string solution have a singular short-distance behavior. We argue that the proper dressed spectral functions are obtained by subtracting the zero-temperature correlators. The dressed spectral functions have a sufficiently fast fall-off at large frequency so that the Langevin process is well defined and the dispersion relations are satisfied. We identify the cases in which the subtraction does not modify the associated low-frequency transport coefficients. These include conformal theories and the non-conformal, non-confining models. We provide several analytic and numerical examples in conformal and non-conformal holographic backgrounds.Comment: 51 pages, 2 figure

    Electron-deuteron scattering in a current-conserving description of relativistic bound states: formalism and impulse approximation calculations

    Get PDF
    The electromagnetic interactions of a relativistic two-body bound state are formulated in three dimensions using an equal-time (ET) formalism. This involves a systematic reduction of four-dimensional dynamics to a three-dimensional form by integrating out the time components of relative momenta. A conserved electromagnetic current is developed for the ET formalism. It is shown that consistent truncations of the electromagnetic current and the NNNN interaction kernel may be made, order-by-order in the coupling constants, such that appropriate Ward-Takahashi identities are satisfied. A meson-exchange model of the NNNN interaction is used to calculate deuteron vertex functions. Calculations of electromagnetic form factors for elastic scattering of electrons by deuterium are performed using an impulse-approximation current. Negative-energy components of the deuteron's vertex function and retardation effects in the meson-exchange interaction are found to have only minor effects on the deuteron form factors.Comment: 42 pages, RevTe

    Quasi-Elastic Scattering in the Inclusive (3^3He, t) Reaction

    Get PDF
    The triton energy spectra of the charge-exchange 12^{12}C(3^3He,t) reaction at 2 GeV beam energy are analyzed in the quasi-elastic nucleon knock-out region. Considering that this region is mainly populated by the charge-exchange of a proton in 3^3He with a neutron in the target nucleus and the final proton going in the continuum, the cross-sections are written in the distorted-wave impulse approximation. The t-matrix for the elementary exchange process is constructed in the DWBA, using one pion- plus rho-exchange potential for the spin-isospin nucleon- nucleon potential. This t-matrix reproduces the experimental data on the elementary pn \rightarrow np process. The calculated cross-sections for the 12^{12}C(3^3He,t) reaction at 2o2^o to 7o7^o triton emission angle are compared with the corresponding experimental data, and are found in reasonable overall accord.Comment: 19 pages, latex, 11 postscript figures available at [email protected], submitted to Phy.Rev.
    corecore