1,061 research outputs found

    Using Fluorescence Microscopy to Identify a Potential New Treatment for Heart Failure

    Get PDF
    Cardiac glycosides have been used to treat heart failure for centuries, but they have a narrow therapeutic window, as they inhibit their target receptor nearly irreversibly. Overdoses can lead to arrhythmias. Phospholemman is a natural inhibitor of the same target as cardiac glycosides. It is possible that mutating phospholemman could achieve the same therapeutic benefit, while allowing cells to reverse the inhibition and thereby avoid an arrhythmia. I used fluorescence microscopy to screen candidate phospholemman mutants and identify one that binds more avidly to its target than the naturally occurring phospholemman. This mutant, L30A, caused similar effects as cardiac glycosides in rabbit heart muscle cells. Yet the effects were also reversed with stimulation of beta-adrenergic receptors, indicating that cells may be able to dynamically attenuate the effect and prevent an arrhythmia. This suggests that L30A phospholemman, used in a gene therapy approach to treating heart failure, could potentially outperform cardiac glycosides with a broader therapeutic window

    Premature differentiation and aberrant movement of pituitary cells lacking both Hes1 and Prop1

    Get PDF
    AbstractIn the pituitary, the transition from proliferating progenitor cell into differentiated hormone producing cell is carefully regulated in a time-dependent and spatially-restricted manner. We report that two targets of Notch signaling, Hes1 and Prop1, are needed to maintain progenitors within Rathke's pouch and for the restriction of differentiated cells to the ventral pituitary. We observed ACTH and αGSU producing cells that had prematurely differentiated within Rathke's pouch along with correlated ectopic expression of Mash1 only when both Prop1 and Hes1 were lost. We also discovered that downregulation of N-cadherin expression in cells as they transition from Rathke's pouch to the anterior lobe appears to be essential for their movement. In the Prop1 mutant, cells are trapped in Rathke's pouch and N-cadherin expression remains high. Also, Slug, a marker of epithelial-to-mesenchymal transition, is absent in the dorsal anterior lobe. When Hes1 is lost in the Prop1 mutant, N-cadherin is downregulated and cells are able to exit Rathke's pouch but have lost their migrational cues and form ectopic foci surrounding Rathke's pouch. Our data reveal important overlapping functions of Hes1 and Prop1 in cell differentiation and movement that are critical for pituitary organogenesis

    A label-free mass spectrometry method for the quantification of protein isotypes

    Get PDF
    Successful quantitative mass spectrometry (MS) requires strategies to link the mass spectrometer response to the analyte abundance, with the response being dependent on more factors than just analyte abundance. Label-dependent strategies rely on the incorporation of an isotopically labeled internal standard into the sample. Current label-free strategies (performed without internal standards) are useful for analyzing samples that are unsuitable for isotopic labeling but are less accurate. Here we describe a label-free technique applicable to analysis of products from related genes (isotypes). This approach enables the invariant tryptic peptide sequences within the family to serve as “built-in” internal standards and the isotype-specific peptide sequences to report the amount of the various isotypes. A process of elimination segregates reliably trypsin-released standard and reporter peptides from unreliably released peptides. The specific MS response factors for these reporter and standard peptides can be determined using synthetic peptides. Analysis of HeLa tubulin digests revealed peptides from βI-, βII-, βIII-, βIVb-, and βV-tubulin, eight of which were suitable; along with five standard peptides for quantification of the β-tubulin isotypes. To show the utility of this method, we determined that βI-tubulin represented 77% and βIIItubulin represented 3.2% of the total HeLa β-tubulin

    Synfuel Production As An Economic Farm Enterprise

    Get PDF

    Toward 3D retrieval of exoplanet atmospheres: assessing thermochemical equilibrium estimation methods

    Get PDF
    Characterizing exoplanetary atmospheres via Bayesian retrievals requires assuming some chemistry model, such as thermochemical equilibrium or parameterized abundances. The higher-resolution data offered by upcoming telescopes enable more complex chemistry models within retrieval frameworks. Yet many chemistry codes that model more complex processes like photochemistry and vertical transport are computationally expensive, and directly incorporating them into a 1D retrieval model can result in prohibitively long execution times. Additionally, phase-curve observations with upcoming telescopes motivate 2D and 3D retrieval models, further exacerbating the lengthy runtime for retrieval frameworks with complex chemistry models. Here we compare thermochemical equilibrium approximation methods based on their speed and accuracy with respect to a Gibbs energy-minimization code. We find that, while all methods offer orders-of-magnitude reductions in computational cost, neural network surrogate models perform more accurately than the other approaches considered, achieving a median absolute dex error of <0.03 for the phase space considered. While our results are based on a 1D chemistry model, our study suggests that higher-dimensional chemistry models could be incorporated into retrieval models via this surrogate modeling approach

    An Ensemble of Bayesian Neural Networks for Exoplanetary Atmospheric Retrieval

    Get PDF
    Machine learning is now used in many areas of astrophysics, from detecting exoplanets in Kepler transit signals to removing telescope systematics. Recent work demonstrated the potential of using machine learning algorithms for atmospheric retrieval by implementing a random forest to perform retrievals in seconds that are consistent with the traditional, computationally-expensive nested-sampling retrieval method. We expand upon their approach by presenting a new machine learning model, \texttt{plan-net}, based on an ensemble of Bayesian neural networks that yields more accurate inferences than the random forest for the same data set of synthetic transmission spectra. We demonstrate that an ensemble provides greater accuracy and more robust uncertainties than a single model. In addition to being the first to use Bayesian neural networks for atmospheric retrieval, we also introduce a new loss function for Bayesian neural networks that learns correlations between the model outputs. Importantly, we show that designing machine learning models to explicitly incorporate domain-specific knowledge both improves performance and provides additional insight by inferring the covariance of the retrieved atmospheric parameters. We apply \texttt{plan-net} to the Hubble Space Telescope Wide Field Camera 3 transmission spectrum for WASP-12b and retrieve an isothermal temperature and water abundance consistent with the literature. We highlight that our method is flexible and can be expanded to higher-resolution spectra and a larger number of atmospheric parameters

    Towards 3D Retrieval of Exoplanet Atmospheres: Assessing Thermochemical Equilibrium Estimation Methods

    Full text link
    Characterizing exoplanetary atmospheres via Bayesian retrievals requires assuming some chemistry model, such as thermochemical equilibrium or parameterized abundances. The higher-resolution data offered by upcoming telescopes enables more complex chemistry models within retrieval frameworks. Yet, many chemistry codes that model more complex processes like photochemistry and vertical transport are computationally expensive, and directly incorporating them into a 1D retrieval model can result in prohibitively long execution times. Additionally, phase-curve observations with upcoming telescopes motivate 2D and 3D retrieval models, further exacerbating the lengthy runtime for retrieval frameworks with complex chemistry models. Here, we compare thermochemical equilibrium approximation methods based on their speed and accuracy with respect to a Gibbs energy-minimization code. We find that, while all methods offer orders of magnitude reductions in computational cost, neural network surrogate models perform more accurately than the other approaches considered, achieving a median absolute dex error <0.03 for the phase space considered. While our results are based on a 1D chemistry model, our study suggests that higher dimensional chemistry models could be incorporated into retrieval models via this surrogate modeling approach.Comment: 22 pages, 14 figures, submitted to PSJ 2022/11/22, revised 2023/3/7, accepted 2023/3/23. Updated to add Zenodo link to Reproducible Research Compendiu

    L30A Mutation of Phospholemman Mimics Effects of Cardiac Glycosides in Isolated Cardiomyocytes

    Get PDF
    This document is the Accepted Manuscript version of a Published Work that appeared in final form in Biochemistry, © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see http://pubs.acs.org/doi/abs/10.1021/acs.biochem.6b00633To determine if mutations introduced into phospholemman (PLM) could increase the level of PLM–Na,K-ATPase (NKA) binding, we performed scanning mutagenesis of the transmembrane domain of PLM and measured Förster resonance energy transfer (FRET) between each mutant and NKA. We observed an increased level of binding to NKA for several PLM mutants compared to that of the wild type (WT), including L27A, L30A, and I32A. In isolated cardiomyocytes, overexpression of WT PLM increased the amplitude of the Ca2+ transient compared to the GFP control. The Ca2+ transient amplitude was further increased by L30A PLM overexpression. The L30A mutation also delayed Ca2+ extrusion and increased the duration of cardiomyocyte contraction. This mimics aspects of the effect of cardiac glycosides, which are known to increase contractility through inhibition of NKA. No significant differences between WT and L30A PLM-expressing myocytes were observed after treatment with isoproterenol, suggesting that the superinhibitory effects of L30A are reversible with β-adrenergic stimulation. We also observed a decrease in the extent of PLM tetramerization with L30A compared to WT using FRET, suggesting that L30 is an important residue for mediating PLM–PLM binding. Molecular dynamics simulations revealed that the potential energy of the L30A tetramer is greater than that of the WT, and that the transmembrane α helix is distorted by the mutation. The results identify PLM residue L30 as an important determinant of PLM tetramerization and of functional inhibition of NKA by PLM.Peer reviewe
    corecore