1,374 research outputs found
The Angular Resolution of Space-Based Gravitational Wave Detectors
Proposed space-based gravitational wave antennas involve satellites arrayed
either in an equilateral triangle around the earth in the ecliptic plane (the
ecliptic-plane option) or in an equilateral triangle orbiting the sun in such a
way that the plane of the triangle is tilted at 60 degrees relative to the
ecliptic (the precessing-plane option). In this paper, we explore the angular
resolution of these two classes of detectors for two kinds of sources
(essentially monochromatic compact binaries and coalescing massive-black-hole
binaries) using time-domain expressions for the gravitational waveform that are
accurate to 4/2 PN order. Our results display an interesting effect not
previously reported in the literature, and underline the importance of
including the higher-order PN terms in the waveform when predicting the angular
resolution of ecliptic-plane detector arrays.Comment: 13 pages, 6 figures, submitted to Phys Rev D. The current version
corrects an error in our original paper and adds some clarifying language.
The error also required correction of the graphs now shown in Figures 3
through
Optical interferometer in space
The present design concepts for a Laser Gravitational Wave Observatory in Space are described. Laser heterodyne distance measurements are made between test masses located in three spacecraft separated by roughly 10(exp 6) km. The major technology issues are: the reduction of spurious acceleration noise for the test masses to below 2 x 10(exp -15) cm/sq sec/Hz(0.5) from 10(exp -5) to 10(exp -3) Hz; and the measurement of changes in the difference of the antenna arm lengths to 5 x 10(exp -11) cm/Hz(0.5) from 10(exp -3) to 1 Hz with high reliability. The science objectives are: to measure discrete sinusoidal gravitational wave signals from individual sources with periods of 1 second to 1 day; to measure the stochastic background due to unresolved binaries; and to search for gravitational wave pulses with periods longer than 1 sec from possible exotic sources such as gravitational collapse of very massive objects
Estimating the detectable rate of capture of stellar mass black holes by massive central black holes in normal galaxies
The capture and subsequent inspiral of stellar mass black holes on eccentric
orbits by central massive black holes, is one of the more interesting likely
sources of gravitational radiation detectable by LISA. We estimate the rate of
observable events and the associated uncertainties. A moderately favourable
mass function could provide many detectable bursts each year, and a detection
of at least one burst per year is very likely given our current understanding
of the populations in cores of normal spiral galaxies.Comment: 3 pages 2-column revtex Latex macro. No figures. Classical and
Quantum Gravity, accepte
Comparison of LISA and Atom Interferometry for Gravitational Wave Astronomy in Space
One of the atom interferometer gravitational wave missions proposed by
Dimopoulos et al.1 in 2008 was called AGIS-Sat. 2. It had a suggested
gravitational wave sensitivity set by the atom state detection shot noise level
that started at 1 mHz, was comparable to LISA sensitivity from 1 to about 20
mHz, and had better sensitivity from 20 to 500 mHz. The separation between the
spacecraft was 1,000 km, with atom interferometers 200 m long and shades from
sunlight used at each end. A careful analysis of many error sources was
included, but requirements on the time-stability of both the laser wavefront
aberrations and the atom temperatures in the atom clouds were not investigated.
After including these considerations, the laser wavefront aberration stability
requirement to meet the quoted sensitivity level is about 1\times10-8
wavelengths, and is far tighter than for LISA. Also, the temperature
fluctuations between atom clouds have to be less than 1 pK. An alternate atom
interferometer GW mission in Earth orbit called AGIS-LEO with 30 km satellite
separation has been suggested recently. The reduction of wavefront aberration
noise by sending the laser beam through a high-finesse mode-scrubbing optical
cavity is discussed briefly, but the requirements on such a cavity are not
given. Unfortunately, such an Earth-orbiting mission seems to be considerably
more difficult to design than a non-geocentric mission and does not appear to
have comparably attractive scientific goals.Comment: Submitted to Proc. 46th Rencontres de Moriond: Gravitational Waves
and Experimental Gravity, March 20 - 27, 2011, La Thuile, Ital
Stochastic background of gravitational waves
A continuous stochastic background of gravitational waves (GWs) for burst
sources is produced if the mean time interval between the occurrence of bursts
is smaller than the average time duration of a single burst at the emission,
i.e., the so called duty cycle must be greater than one. To evaluate the
background of GWs produced by an ensemble of sources, during their formation,
for example, one needs to know the average energy flux emitted during the
formation of a single object and the formation rate of such objects as well. In
many cases the energy flux emitted during an event of production of GWs is not
known in detail, only characteristic values for the dimensionless amplitude and
frequencies are known. Here we present a shortcut to calculate stochastic
backgrounds of GWs produced from cosmological sources. For this approach it is
not necessary to know in detail the energy flux emitted at each frequency.
Knowing the characteristic values for the ``lumped'' dimensionless amplitude
and frequency we show that it is possible to calculate the stochastic
background of GWs produced by an ensemble of sources.Comment: 6 pages, 4 eps figures, (Revtex) Latex. Physical Review D (in press
Noise characterization for LISA
We consider the general problem of estimating the inflight LISA noise power
spectra and cross-spectra, which are needed for detecting and estimating the
gravitational wave signals present in the LISA data. For the LISA baseline
design and in the long wavelength limit, we bound the error on all spectrum
estimators that rely on the use of the fully symmetric Sagnac combination
(). This procedure avoids biases in the estimation that would otherwise
be introduced by the presence of a strong galactic background in the LISA data.
We specialize our discussion to the detection and study of the galactic white
dwarf-white dwarf binary stochastic signal.Comment: 9 figure
Using binary stars to bound the mass of the graviton
Interacting white dwarf binary star systems, including helium cataclysmic
variable (HeCV) systems, are expected to be strong sources of gravitational
radiation, and should be detectable by proposed space-based laser
interferometer gravitational wave observatories such as LISA. Several HeCV star
systems are presently known and can be studied optically, which will allow
electromagnetic and gravitational wave observations to be correlated.
Comparisons of the phases of a gravitational wave signal and the orbital light
curve from an interacting binary white dwarf star system can be used to bound
the mass of the graviton. Observations of typical HeCV systems by LISA could
potentially yield an upper bound on the inverse mass of the graviton as strong
as km (
eV), more than two orders of magnitude better than present solar system derived
bounds.Comment: 21 pages plus 4 figures; ReVTe
Gravitational Helioseismology?
The magnitudes of the external gravitational perturbations associated with
the normal modes of the Sun are evaluated to determine whether these solar
oscillations could be observed with the proposed Laser Interferometer Space
Antenna (LISA), a network of satellites designed to detect gravitational
radiation. The modes of relevance to LISA---the , low-order , and
-modes---have not been conclusively observed to date. We find that the
energy in these modes must be greater than about in order
to be observable above the LISA detector noise. These mode energies are larger
than generally expected, but are much smaller than the current observational
upper limits. LISA may be confusion-limited at the relevant frequencies due to
the galactic background from short-period white dwarf binaries. Present
estimates of the number of these binaries would require the solar modes to have
energies above about to be observable by LISA.Comment: 8 pages; prepared with REVTEX 3.0 LaTeX macro
Superconducting-coil--resistor circuit with electric field quadratic in the current
It is shown for the first time that the observed [Phys. Lett. A 162 (1992)
105] potential difference Phi_t between the resistor and the screen surrounding
the circuit is caused by polarization of the resistor because of the kinetic
energy of the electrons of the superconducting coil. The proportionality of
Phi_t to the square of the current and to the length of the superconducting
wire is explained. It is pointed out that measuring Phi_t makes it possible to
determine the Fermi quasimomentum of the electrons of a metal resistor.Comment: 2 pages, 1 figur
Gravitational Waves from a Compact Star in a Circular, Inspiral Orbit, in the Equatorial Plane of a Massive, Spinning Black Hole, as Observed by LISA
Results are presented from high-precision computations of the orbital
evolution and emitted gravitational waves for a stellar-mass object spiraling
into a massive black hole in a slowly shrinking, circular, equatorial orbit.
The focus of these computations is inspiral near the innermost stable circular
orbit (isco)---more particularly, on orbits for which the angular velocity
Omega is 0.03 < Omega/Omega_{isco} < 1. The computations are based on the
Teukolsky-Sasaki-Nakamura formalism, and the results are tabulated in a set of
functions that are of order unity and represent relativistic corrections to
low-orbital-velocity formulas. These tables can form a foundation for future
design studies for the LISA space-based gravitational-wave mission. A first
survey of applications to LISA is presented: Signal to noise ratios S/N are
computed and graphed as functions of the time-evolving gravitational-wave
frequency for representative values of the hole's mass M and spin a and the
inspiraling object's mass \mu, with the distance to Earth chosen to be r_o = 1
Gpc. These S/N's show a very strong dependence on the black-hole spin, as well
as on M and \mu. A comparison with predicted event rates shows strong promise
for detecting these waves, but not beyond about 1Gpc if the inspiraling object
is a white dwarf or neutron star. This argues for a modest lowering of LISA's
noise floor. A brief discussion is given of the prospects for extracting
information from the observed wavesComment: Physical Review D, in press; 21 pages, 9 figures, 10 tables it is
present in the RevTeX fil
- …