2,363 research outputs found
Characterization of hormone and protein release from alpha-toxin- permeabilized chromaffin cells in primary culture
Addition of Staphylococcus aureus alpha-toxin to adult bovine chromaffin cells maintained in primary culture causes permeabilization of cell membrane as shown by the release of intracellular 86Rb+. The alpha-toxin does not provoke a spontaneous release of either catecholamines or chromogranin A, a protein marker of the secretory granule, showing the integrity of the secretory vesicle membrane. However the addition of micromolar free Ca2+ concentration induced the co-release of noradrenaline and chromogranin A. In alpha-toxin-treated cells, the released chromogranin A could not be sedimented and lactate dehydrogenase was still associated within cells, which provides direct evidence that secretory product is liberated by exocytosis. By contrast, permeabilization of cells with digitonin caused a Ca2+- dependent but also a Ca2+-independent release of secretory product, a dramatic loss of lactate dehydrogenase, as well as release of secretory product in a sedimentable form. Ca2+-dependent exocytosis from alpha- toxin-permeabilized cells required Mg2+-ATP and did not occur in the presence of other nucleotides. Thus alpha-toxin is a convenient tool to permeabilize chromaffin cells, and has the advantage of keeping intracellular structures, specifically the exocytotic machinery, intact
Chiral QCD sum rules for open charm mesons
QCD sum rules for chiral partners in the open-charm meson sector are
presented at nonzero baryon net density or temperature. We focus on the
differences between pseudo-scalar and scalar as well as vector and axial-vector
D mesons and derive the corresponding Weinberg type sum rules. This allows for
the identification of such QCD condensates which drive the non-degeneracy of
chiral partners in lowest order of the strong coupling alpha_s and which
therefore may serve as "order parameters" for chiral restoration (or elements
thereof).Comment: 24 pages, 4 figure
Introduction of Macromolecules into Bovine Adrenal Medullary Chromaffin Cells and Rat Pheochromocytoma Cells (PC12) by Permeabilization with Streptolysin O: Inhibitory Effect of Tetanus Toxin on Catecholamine Secretion
Conditions are described for controlled plasma membrane permeabilization of rat pheochromocytoma cells (PC12) and cultured bovine adrenal chromaffin cells by Streptolysin O (SLO). The transmembrane pores created by SLO invoke rapid efflux of intracellular 86Rb+ and ATP, and also permit passive diffusion of proteins, including immunoglobulins, into the cells. SLO-permeabilized PC12 cells release [3H]dopamine in response to micromolar concentrations of free Ca2+. Permeabilized adrenal chromaffin cells present a similar exocytotic response to Ca2+ in the presence of Mg2+/ ATP. Permeabilized PC12 cells accumulate antibodies against synaptophysin and calmodulin, but neither antibody reduces the Ca2+-dependent secretory response. Reduced tetanus toxin, although ineffective when applied to intact chromaffin cells, inhibits Ca2+-induced exocytosis by both types of permeabilized cells studied. Omission of dithiothreitol, toxin inactivation by boiling, or preincubation with neutralizing antibodies abolishes the inhibitory effect. The data indicate that plasma membrane permeabilization by Streptolysin O is a useful tool to probe and define cellular components that are involved in the final steps of exocytosis
Analysis of the doubly heavy baryons in the nuclear matter with the QCD sum rules
In this article, we study the doubly heavy baryon states ,
, and in the nuclear matter using the QCD
sum rules, and derive three coupled QCD sum rules for the masses, vector
self-energies and pole residues. The predictions for the mass-shifts in the
nuclear matter , , and
can be confronted with the
experimental data in the future.Comment: 10 pages, 4 figure
Assessing a Hydrodynamic Description for Instabilities in Highly Dissipative, Freely Cooling Granular Gases
An intriguing phenomenon displayed by granular flows and predicted by
kinetic-theory-based models is the instability known as particle "clustering,"
which refers to the tendency of dissipative grains to form transient, loose
regions of relatively high concentration. In this work, we assess a
modified-Sonine approximation recently proposed [Garz\'o et al., Physica A 376,
94 (2007)] for a granular gas via an examination of system stability. In
particular, we determine the critical length scale associated with the onset of
two types of instabilities -vortices and clusters- via stability analyses of
the Navier-Stokes-order hydrodynamic equations by using the expressions of the
transport coefficients obtained from both the standard and the modified-Sonine
approximations. We examine the impact of both Sonine approximations over a
range of solids fraction \phi <0.2 for small restitution coefficients
e=0.25--0.4, where the standard and modified theories exhibit discrepancies.
The theoretical predictions for the critical length scales are compared to
molecular dynamics (MD) simulations, of which a small percentage were not
considered due to inelastic collapse. Results show excellent quantitative
agreement between MD and the modified-Sonine theory, while the standard theory
loses accuracy for this highly dissipative parameter space. The modified theory
also remedies a (highdissipation) qualitative mismatch between the standard
theory and MD for the instability that forms more readily. Furthermore, the
evolution of cluster size is briefly examined via MD, indicating that
domain-size clusters may remain stable or halve in size, depending on system
parameters.Comment: 4 figures; to be published in Phys. Rev.
Molecular Aspects of Secretory Granule Exocytosis by Neurons and Endocrine Cells
Neuronal communication and endocrine signaling are fundamental for integrating
the function of tissues and cells in the body. Hormones released by endocrine
cells are transported to the target cells through the circulation. By contrast, transmitter
release from neurons occurs at specialized intercellular junctions, the synapses.
Nevertheless, the mechanisms by which signal molecules are synthesized,
stored, and eventually secreted by neurons and endocrine cells are very similar.
Neurons and endocrine cells have in common two different types of secretory
organelles, indicating the presence of two distinct secretory pathways. The synaptic
vesicles of neurons contain excitatory or inhibitory neurotransmitters, whereas the
secretory granules (also referred to as dense core vesicles, because of their electron
dense content) are filled with neuropeptides and amines. In endocrine cells, peptide
hormones and amines predominate in secretory granules. The function and content
of vesicles, which share antigens with synaptic vesicles, are unknown for most
endocrine cells. However, in B cells of the pancreatic islet, these vesicles contain
GABA, which may be involved in intrainsular signaling.'
Exocytosis of both synaptic vesicles and secretory granules is controlled by
cytoplasmic calcium. However, the precise mechanisms of the subsequent steps,
such as docking of vesicles and fusion of their membranes with the plasma membrane,
are still incompletely understood. This contribution summarizes recent observations
that elucidate components in neurons and endocrine cells involved in
exocytosis. Emphasis is put on the intracellular aspects of the release of secretory
granules that recently have been analyzed in detail
Tractable Pathfinding for the Stochastic On-Time Arrival Problem
We present a new and more efficient technique for computing the route that
maximizes the probability of on-time arrival in stochastic networks, also known
as the path-based stochastic on-time arrival (SOTA) problem. Our primary
contribution is a pathfinding algorithm that uses the solution to the
policy-based SOTA problem---which is of pseudo-polynomial-time complexity in
the time budget of the journey---as a search heuristic for the optimal path. In
particular, we show that this heuristic can be exceptionally efficient in
practice, effectively making it possible to solve the path-based SOTA problem
as quickly as the policy-based SOTA problem. Our secondary contribution is the
extension of policy-based preprocessing to path-based preprocessing for the
SOTA problem. In the process, we also introduce Arc-Potentials, a more
efficient generalization of Stochastic Arc-Flags that can be used for both
policy- and path-based SOTA. After developing the pathfinding and preprocessing
algorithms, we evaluate their performance on two different real-world networks.
To the best of our knowledge, these techniques provide the most efficient
computation strategy for the path-based SOTA problem for general probability
distributions, both with and without preprocessing.Comment: Submission accepted by the International Symposium on Experimental
Algorithms 2016 and published by Springer in the Lecture Notes in Computer
Science series on June 1, 2016. Includes typographical corrections and
modifications to pre-processing made after the initial submission to SODA'15
(July 7, 2014
In situ radiographic investigation of de lithiation mechanisms in a tin electrode lithium ion battery.
The lithiation and delithiation mechanisms of multiple Sn particles in a customized flat radiography cell were investigated by in amp; 8197;situ synchrotron radiography. For the first time, four de lithiation phenomena in a Sn electrode battery system are highlighted 1 amp; 8197;the de lithiation behavior varies between different Sn particles, 2 amp; 8197;the time required to lithiate individual Sn particles is markedly different from the time needed to discharge the complete battery, 3 amp; 8197;electrochemical deactivation of originally electrochemically active particles is reported, and 4 amp; 8197;a change of electrochemical behavior of individual particles during cycling is found and explained by dynamic changes of de lithiation pathways amongst particles within the electrode. These unexpected findings fundamentaly expand the understanding of the underlying de lithiation mechanisms inside commercial lithium ion batteries LIBs and would open new design principles for high performance next generation LIB
Heavy pseudoscalar mesons in a Schwinger-Dyson--Bethe-Salpeter approach
The mass spectrum of heavy pseudoscalar mesons, described as quark-antiquark
bound systems, is considered within the Bethe-Salpeter formalism with
momentum-dependent masses of the constituents. This dependence is found by
solving the Schwinger-Dyson equation for quark propagators in rainbow-ladder
approximation. Such an approximation is known to provide both a fast
convergence of numerical methods and accurate results for lightest mesons.
However, as the meson mass increases, the method becomes less stable and
special attention must be devoted to details of numerical means of solving the
corresponding equations. We focus on the pseudoscalar sector and show that our
numerical scheme describes fairly accurately the , , , and
ground states. Excited states are considered as well. Our calculations
are directly related to the future physics programme at FAIR.Comment: 9 pages, 3 figures; Based on materials of the contribution
"Relativistic Description of Two- and Three-Body Systems in Nuclear Physics",
ECT*, October 19-23, 200
Morphological evolution of electrochemically plated stripped lithium microstructures by synchrotron X ray phase contrast tomography
Due to its low redox potential and high theoretical specific capacity, Li metal has drawn worldwide research attention because of its potential use in next generation battery technologies such as Li S and Li O2. Unfortunately, uncontrollable growth of Li microstructures LmSs, e.g., dendrites, fibers during electrochemical Li stripping plating has prevented their practical commercialization. Despite various strategies proposed to mitigate LmS nucleation and or block its growth, a fundamental understanding of the underlying evolution mechanisms remains elusive. Herein, synchrotron in line phase contrast X ray tomography was employed to investigate the morphological evolution of electrochemically deposited dissolved LmSs nondestructively. We present a 3D characterization of electrochemically stripped Li electrodes with regard to electrochemically plated LmSs. We clarify fundamentally the origin of the porous lithium interface growing into Li electrodes. Moreover, cleavage of the separator caused by growing LmS was experimentally observed and visualized in 3D. Our systematic investigation provides fundamental insights into LmS evolution and enables us to understand the evolution mechanisms in Li electrodes more profoundl
- …
