866 research outputs found

    Proteomic analysis of acidic chaperones, and stress proteins in extreme halophile Halobacterium NRC-1: a comparative proteomic approach to study heat shock response

    Get PDF
    BACKGROUND: Halobacterium sp. NRC-1 is an extremely halophilic archaeon and has adapted to optimal growth under conditions of extremely high salinity. Its proteome is highly acidic with a median pI of 4.9, a unique characteristic which helps the organism to adapt high saline environment. In the natural growth environment, Halobacterium NRC-1 encounters a number of stressful conditions including high temperature and intense solar radiation, oxidative and cold stress. Heat shock proteins and chaperones play indispensable roles in an organism's survival under many stress conditions. The aim of this study was to develop an improved method of 2-D gel electrophoresis with enhanced resolution of the acidic proteome, and to identify proteins with diverse cellular functions using in-gel digestion and LC-MS/MS and MALDI-TOF approach. RESULTS: A modified 2-D gel electrophoretic procedure, employing IPG strips in the range of pH 3–6, enabled improved separation of acidic proteins relative to previous techniques. Combining experimental data from 2-D gel electrophoresis with available genomic information, allowed the identification of at least 30 cellular proteins involved in many cellular functions: stress response and protein folding (CctB, PpiA, DpsA, and MsrA), DNA replication and repair (DNA polymerase A α subunit, Orc4/CDC6, and UvrC), transcriptional regulation (Trh5 and ElfA), translation (ribosomal proteins Rps27ae and Rphs6 of the 30 S ribosomal subunit; Rpl31eand Rpl18e of the 50 S ribosomal subunit), transport (YufN), chemotaxis (CheC2), and housekeeping (ThiC, ThiD, FumC, ImD2, GapB, TpiA, and PurE). In addition, four gene products with undetermined function were also identified: Vng1807H, Vng0683C, Vng1300H, and Vng6254. To study the heat shock response of Halobacterium NRC-1, growth conditions for heat shock were determined and the proteomic profiles under normal (42°C), and heat shock (49°C) conditions, were compared. Using a differential proteomic approach in combination with available genomic information, bioinformatic analysis revealed five putative heat shock proteins that were upregulated in cells subjected to heat stress at 49°C, namely DnaJ, GrpE, sHsp-1, Hsp-5 and sHsp-2. CONCLUSION: The modified 2-D gel electrophoresis markedly enhanced the resolution of the extremely acidic proteome of Halobacterium NRC-1. Constitutive expression of stress proteins and chaperones help the organism to adapt and survive under extreme salinity and other stress conditions. The upregulated expression pattern of putative chaperones DnaJ, GrpE, sHsp-1, Hsp-5 and sHsp-2 under elevated temperature clearly suggests that Halobacterium NRC-1 has a sophisticated defense mechanism to survive in extreme environments

    Ultrafast vectorial and scalar dynamics of ionic clusters: Azobenzene solvated by oxygen

    Get PDF
    The ultrafast dynamics of clusters of trans-azobenzene anion (A–) solvated by oxygen molecules was investigated using femtosecond time-resolved photoelectron spectroscopy. The time scale for stripping off all oxygen molecules from A– was determined by monitoring in real time the transient of the A– rise, following an 800 nm excitation of A– (O2)n, where n=1–4. A careful analysis of the time-dependent photoelectron spectra strongly suggests that for n>1 a quasi-O4 core is formed and that the dissociation occurs by a bond cleavage between A– and conglomerated (O2)n rather than a stepwise evaporation of O2. With time and energy resolutions, we were able to capture the photoelectron signatures of transient species which instantaneously rise (2- for A–O2 and A·O4-·(O2)n–2 for A–(O2)n, where n=2–4. Subsequent to an ultrafast electron recombination, A– rises with two distinct time scales: a subpicosecond component reflecting a direct bond rupture of the A–-(O2)n nuclear coordinate and a slower component (1.6–36 ps, increasing with n) attributed to an indirect channel exhibiting a quasistatistical behavior. The photodetachment transients exhibit a change in the transition dipole direction as a function of time delay. Rotational dephasing occurs on a time scale of 2–3 ps, with a change in the sign of the transient anisotropy between A–O2 and the larger clusters. This behavior is a key indicator of an evolving cluster structure and is successfully modeled by calculations based on the structures and inertial motion of the parent clusters

    Investigation of Co2_2FeSi: The Heusler compound with Highest Curie Temperature and Magnetic Moment

    Full text link
    This work reports on structural and magnetic investigations of the Heusler compound Co2_2FeSi. X-Ray diffraction and M\"o\ss bauer spectrometry indicate an ordered L21L2_1 structure. Magnetic measurements by means of X-ray magnetic circular dichroism and magnetometry revealed that this compound is, currently, the material with the highest magnetic moment (6μB6 \mu_B) and Curie-temperature (1100K) in the classes of Heusler compounds as well as half-metallic ferromagnets

    Correlation in the transition metal based Heusler compounds Co2_2MnSi and Co2_2FeSi

    Full text link
    Half-metallic ferromagnets like the full Heusler compounds with formula X2_2YZ are supposed to show an integer value of the spin magnetic moment. Calculations reveal in certain cases of X = Co based compounds non-integer values, in contrast to experiments. In order to explain deviations of the magnetic moment calculated for such compounds, the dependency of the electronic structure on the lattice parameter was studied theoretically. In local density approximation (LDA), the minimum total energy of Co2_2FeSi is found for the experimental lattice parameter, but the calculated magnetic moment is about 12% too low. Half-metallic ferromagnetism and a magnetic moment equal to the experimental value of 6μB6\mu_B are found, however, only after increasing the lattice parameter by more than 6%. To overcome this discrepancy, the LDA+U+U scheme was used to respect on-site electron correlation in the calculations. Those calculations revealed for Co2_2FeSi that an effective Coulomb-exchange interaction Ueff=U−JU_{eff}=U-J in the range of about 2eV to 5eV leads to half-metallic ferromagnetism and the measured, integer magnetic moment at the measured lattice parameter. Finally, it is shown in the case of Co2_2MnSi that correlation may also serve to destroy the half-metallic behavior if it becomes too strong (for Co2_2MnSi above 2eV and for Co2_2FeSi above 5eV). These findings indicate that on-site correlation may play an important role in the description of Heusler compounds with localized moments.Comment: submitted to Phys. Rev.

    Role of Hsp90 in Systemic Lupus Erythematosus and Its Clinical Relevance

    Get PDF
    Heat shock proteins (HSP) are a family of ubiquitous and phylogenically highly conserved proteins which play an essential role as molecular chaperones in protein folding and transport. Heat Shock Protein 90 (Hsp90) is not mandatory for the biogenesis of most proteins, rather it participate in structural maturation and conformational regulation of a number of signaling molecules and transcription factors. Hsp90 has been shown to play an important role in antigen presentation, activation of lymphocytes, macrophages, maturation of dendritic cells, and in the enhanceosome mediated induction of inflammation. Systemic lupus erythematosus (SLE) is a chronic autoimmune inflammatory disease with complex immunological and clinical manifestations. Dysregulated expression of Type I interferon α, activation of B cells and production of autoantibodies are hallmarks of SLE. The enhanced levels of Hsp90 were detected in the serum of SLE patients. The elevated level of Hsp90 in SLE has also been correlated with increased levels of IL-6 and presence of autoantibodies to Hsp90. This suggests that Hsp90 may contribute to the inflammation and disease progression and that targeting of Hsp 90 expression may be a potential treatment of SLE. The pharmacologic inhibition of Hsp90 was successfully applied in mouse models of autoimmune encephalomyelitis and SLE—like autoimmune diseases. Thus targeting Hsp90 may be an effective treatment for SLE, especially if combined with other targeted therapeutic approaches

    Perkembangan Dan Kandungan Nutrisi Larva Hermetia Illucens (Linnaeus) (Diptera: Stratiomyidae) Pada Bungkil Kelapa Sawit

    Full text link
    Hermetia illucens, is used as a reducing agent of palm kernel meal (PKM), as well as one of alternative protein sources for aquaculture purposes. Information about biology of H. illucens is absolutely required in mass production. The objectives of these researches were to study the development of H. illucens including the effect of supplementary food to the adult, and nutrient content of the immature stage. The sample of 20 larvae from each 3 replicates were measured and weighed on 0-19th day (larva) and 24th day (pupa) from egg hatching. H. illucens adults were fed by water and honey 5% (v/v). Eggs were collected and counted. Nutrient content of immature stage: 5, 10, 15, 20 days old (larvae), and 25 days old (prepupae) reared on PKM were analyzed proximately. Dry matter was determined by weight loss on drying at 105 oC during overnight. Crude protein was determined by Kjeldahl procedure (N x 6.25), crude fat by soxhlet (ether extract), crude ash by determining the residue after heating at 550 oC for 4–5 h. Data were analyzed descriptively by average from triplicate. The development of H. illucens was shorter than those in previous studies as the differences of abiotical factor. PKM was a suitable medium for development. It was better, however, to fed the adult with honey since it could enhance the fecundity. The young larva certainly contained the best quality of nutrition. To meet the quantity of mass production, however, the use of the elder larva (bigger) was suggested
    • …
    corecore