5,390 research outputs found
The structure of di-valent and tri-valent metals
Pseudopotential and second order perturbation theory applied to divalent and trivalent metal structure
Competition between Kondo screening and quantum Hall edge reconstruction
We report on a Kondo correlated quantum dot connected to two-dimensional
leads where we demonstrate the renormalization of the g-factor in the pure
Zeeman case i.e, for magnetic fields parallel to the plane of the quantum dot.
For the same system we study the influence of orbital effects by investigating
the quantum Hall regime i.e. a perpendicular magnetic field is applied. In this
case an unusual behaviour of the suppression of the Kondo effect and of the
split zero-bias anomaly is observed. The splitting decreases with magnetic
field and shows discontinuous changes which are attributed to the intricate
interplay between Kondo screening and the quantum Hall edge structure
originating from electrostatic screening. This edge structure made up of
compressible and incompressible stripes strongly affects the Kondo temperature
of the quantum dot and thereby influences the renormalized g-factor
Why do gallium clusters have a higher melting point than the bulk?
Density functional molecular dynamical simulations have been performed on
Ga and Ga clusters to understand the recently observed
higher-than-bulk melting temperatures in small gallium clusters [Breaux {\em et
al.}, Phys. Rev. Lett. {\bf 91}, 215508 (2003)]. The specific-heat curve,
calculated with the multiple-histogram technique, shows the melting temperature
to be well above the bulk melting point of 303 K, viz. around 650 K and 1400 K
for Ga and Ga, respectively. The higher-than-bulk melting
temperatures are attributed mainly to the covalent bonding in these clusters,
in contrast with the covalent-metallic bonding in the bulk.Comment: 4 pages, including 6 figures. accepted for publication in Phys. Rev.
Let
The Structure of Barium in the hcp Phase Under High Pressure
Recent experimental results on two hcp phases of barium under high pressure
show interesting variation of the lattice parameters. They are here interpreted
in terms of electronic structure calculation by using the LMTO method and
generalized pseudopotential theory (GPT) with a NFE-TBB approach. In phase II
the dramatic drop in c/a is an instability analogous to that in the group II
metals but with the transfer of s to d electrons playing a crucial role in Ba.
Meanwhile in phase V, the instability decrease a lot due to the core repulsion
at very high pressure. PACS numbers: 62.50+p, 61.66Bi, 71.15.Ap, 71.15Hx,
71.15LaComment: 29 pages, 8 figure
Investigation of medium and high temperature phase change materials
A detailed description of the programs for acquisition and analysis of the test results is given. Basically it concerns three programs. The TEST program controls the recording of the test data. With the THELLI program it is possible to follow the temperature curve recorded for each individual thermoelement during the test. With the AUSW program the test data can be analyzed, to determine, for example, the melting point and the start of melting. The first results of the service life tests are discussed. From these it is attempted to draw inferences for the subsequent tests. An attempt is made to focus on the determination of the area-related mass loss, the reduction in thickness and the corrosion rate as well as optical and scanning electron microscope evaluation
Phase diagram and spin Hamiltonian of weakly-coupled anisotropic S=1/2 chains in CuCl2*2((CD3)2SO)
Field-dependent specific heat and neutron scattering measurements were used
to explore the antiferromagnetic S=1/2 chain compound CuCl2 * 2((CD3)2SO). At
zero field the system acquires magnetic long-range order below TN=0.93K with an
ordered moment of 0.44muB. An external field along the b-axis strengthens the
zero-field magnetic order, while fields along the a- and c-axes lead to a
collapse of the exchange stabilized order at mu0 Hc=6T and mu0 Hc=3.5T,
respectively (for T=0.65K) and the formation of an energy gap in the excitation
spectrum. We relate the field-induced gap to the presence of a staggered
g-tensor and Dzyaloshinskii-Moriya interactions, which lead to effective
staggered fields for magnetic fields applied along the a- and c-axes.
Competition between anisotropy, inter-chain interactions and staggered fields
leads to a succession of three phases as a function of field applied along the
c-axis. For fields greater than mu0 Hc, we find a magnetic structure that
reflects the symmetry of the staggered fields. The critical exponent, beta, of
the temperature driven phase transitions are indistinguishable from those of
the three-dimensional Heisenberg magnet, while measurements for transitions
driven by quantum fluctuations produce larger values of beta.Comment: revtex 12 pages, 11 figure
The 5-hydroxytryptamine(4a) receptor is palmitoylated at two different sites and acylation is critically involved in regulation of receptor constitutive activity
A single atom detector integrated on an atom chip: fabrication, characterization and application
We describe a robust and reliable fluorescence detector for single atoms that
is fully integrated into an atom chip. The detector allows spectrally and
spatially selective detection of atoms, reaching a single atom detection
efficiency of 66%. It consists of a tapered lensed single-mode fiber for
precise delivery of excitation light and a multi-mode fiber to collect the
fluorescence. The fibers are mounted in lithographically defined holding
structures on the atom chip. Neutral 87Rb atoms propagating freely in a
magnetic guide are detected and the noise of their fluorescence emission is
analyzed. The variance of the photon distribution allows to determine the
number of detected photons / atom and from there the atom detection efficiency.
The second order intensity correlation function of the fluorescence shows
near-perfect photon anti-bunching and signs of damped Rabi-oscillations. With
simple improvements one can boost the detection efficiency to > 95%.Comment: 24 pages, 11 figure
Non equilibrium anisotropic excitons in atomically thin ReS
We present a systematic investigation of the electronic properties of bulk
and few layer ReS van der Waals crystals using low temperature optical
spectroscopy. Weak photoluminescence emission is observed from two
non-degenerate band edge excitonic transitions separated by 20 meV. The
comparable emission intensity of both excitonic transitions is incompatible
with a fully thermalized (Boltzmann) distribution of excitons, indicating the
hot nature of the emission. While DFT calculations predict bilayer ReS to
have a direct fundamental band gap, our optical data suggests that the
fundamental gap is indirect in all cases
- …
