261 research outputs found

    System measures unidirectional forces, excludes extraneous forces

    Get PDF
    System measures unidirectional force without interference from other directional forces. The measuring apparatus is mounted so that it only moves vertically and is constrained from horizontal and rotational movement. This system can be used to accurately measure small forces in one direction, or as an analytic balance

    Rubber-coated bellows improves vibration damping in vacuum lines

    Get PDF
    Compact-vibration damping systems, consisting of rubber-coated metal bellows with a sliding O-ring connector, are used in vacuum lines. The device presents a metallic surface to the vacuum system and combines flexibility with the necessary stiffness. It protects against physical damage, reduces fatigue failure, and provides easy mating of nonparallel lines

    Image effects and the vibrating sample magnetometer

    Get PDF
    Image effects and vibrating sample magnetomete

    Cryogenic liquid transfer system reduces residual boiloff

    Get PDF
    System for transferring cryogenic liquids to a dewar prevents boiloff of residual liquid by venting the boiloff to the atmosphere during the transfer tube cooling period. The system is most useful with liquids having very small heat of vaporization

    Smolyak's algorithm: A powerful black box for the acceleration of scientific computations

    Full text link
    We provide a general discussion of Smolyak's algorithm for the acceleration of scientific computations. The algorithm first appeared in Smolyak's work on multidimensional integration and interpolation. Since then, it has been generalized in multiple directions and has been associated with the keywords: sparse grids, hyperbolic cross approximation, combination technique, and multilevel methods. Variants of Smolyak's algorithm have been employed in the computation of high-dimensional integrals in finance, chemistry, and physics, in the numerical solution of partial and stochastic differential equations, and in uncertainty quantification. Motivated by this broad and ever-increasing range of applications, we describe a general framework that summarizes fundamental results and assumptions in a concise application-independent manner

    Iteratively regularized Newton-type methods for general data misfit functionals and applications to Poisson data

    Get PDF
    We study Newton type methods for inverse problems described by nonlinear operator equations F(u)=gF(u)=g in Banach spaces where the Newton equations F(un;un+1un)=gF(un)F'(u_n;u_{n+1}-u_n) = g-F(u_n) are regularized variationally using a general data misfit functional and a convex regularization term. This generalizes the well-known iteratively regularized Gauss-Newton method (IRGNM). We prove convergence and convergence rates as the noise level tends to 0 both for an a priori stopping rule and for a Lepski{\u\i}-type a posteriori stopping rule. Our analysis includes previous order optimal convergence rate results for the IRGNM as special cases. The main focus of this paper is on inverse problems with Poisson data where the natural data misfit functional is given by the Kullback-Leibler divergence. Two examples of such problems are discussed in detail: an inverse obstacle scattering problem with amplitude data of the far-field pattern and a phase retrieval problem. The performence of the proposed method for these problems is illustrated in numerical examples

    A COMPARATIVE STUDY OF METHODS FOR DRIVE TIME ESTIMATION ON GEOSPATIAL BIG DATA: A CASE STUDY IN USA

    Get PDF
    Travel time estimation is crucial for several geospatial research studies, particularly healthcare accessibility studies. This paper presents a comparative study of six methods for drive time estimation on geospatial big data in the USA. The comparison is done with respect to the cost, accuracy, and scalability of these methods. The six methods examined are Google Maps API, Bing Maps API, Esri Routing Web Service, ArcGIS Pro Desktop, OpenStreetMap NetworkX (OSMnx), and Open Source Routing Machine (OSRM). Our case study involves calculating driving times of 10,000 origin-destination (OD) pairs between ZIP code population centroids and pediatric hospitals in the USA. We found that OSRM provides a low-cost, accurate, and efficient solution for calculating travel time on geospatial big data. Our study provides valuable insight into selecting the most appropriate drive time estimation method and is a benchmark for comparing the six different methods. Our open-source scripts are published on GitHub (https://github.com/wybert/Comparative-Study-of-Methods-for-Drive-Time-Estimation) to facilitate further usage and research by the wider academic community
    corecore