15,919 research outputs found
Remote water monitoring system
A remote water monitoring system is described that integrates the functions of sampling, sample preservation, sample analysis, data transmission and remote operation. The system employs a floating buoy carrying an antenna connected by lines to one or more sampling units containing several sample chambers. Receipt of a command signal actuates a solenoid to open an intake valve outward from the sampling unit and communicates the water sample to an identifiable sample chamber. Such response to each signal receipt is repeated until all sample chambers are filled in a sample unit. Each sample taken is analyzed by an electrochemical sensor for a specific property and the data obtained is transmitted to a remote sending and receiving station. Thereafter, the samples remain isolated in the sample chambers until the sampling unit is recovered and the samples removed for further laboratory analysis
Recommended from our members
Inverse transformed encoding models - A solution to the problem of correlated trial-by-trial parameter estimates in fMRI decoding
Techniques of multivariate pattern analysis (MVPA) can be used to decode the discrete experimental condition or a continuous modulator variable from measured brain activity during a particular trial. In functional magnetic resonance imaging (fMRI), trial-wise response amplitudes are sometimes estimated from the measured signal using a general linear model (GLM) with one onset regressor for each trial. When using rapid event-related designs with trials closely spaced in time, those estimates are highly variable and serially correlated due to the temporally extended shape of the hemodynamic response function (HRF). Here, we describe inverse transformed encoding modelling (ITEM), a principled approach of accounting for those serial correlations and decoding from the resulting estimates, at low computational cost and with no loss in statistical power. We use simulated data to show that ITEM outperforms the current standard approach in terms of decoding accuracy and analyze empirical data to demonstrate that ITEM is capable of visual reconstruction from fMRI signals
Generating Equidistributed Meshes in 2D via Domain Decomposition
In this paper we consider Schwarz domain decomposition applied to the
generation of 2D spatial meshes by a local equidistribution principle. We
briefly review the derivation of the local equidistribution principle and the
appropriate choice of boundary conditions. We then introduce classical and
optimized Schwarz domain decomposition methods to solve the resulting system of
nonlinear equations. The implementation of these iterations are discussed, and
we conclude with numerical examples to illustrate the performance of the
approach
Factors influencing the distribution of charge in polar nanocrystals
We perform first-principles calculations of wurtzite GaAs nanorods to explore
the factors determining charge distributions in polar nanostructures. We show
that both the direction and magnitude of the dipole moment of a
nanorod, and its electic field, depend sensitively on how its surfaces are
terminated and do not depend strongly on the spontaneous polarization of the
underlying lattice. We identify two physical mechanisms by which
is controlled by the surface termination, and we show that the excess charge on
the nanorod ends is not strongly localized. We discuss the implications of
these results for tuning nanocrystal properties, and for their growth and
assembly.Comment: Accepted for publication in Phys. Rev. B Rapid Communication
- …
