733 research outputs found

    On the Tomography of Networks and Multicast Trees

    Full text link
    In this paper we model the tomography of scale free networks by studying the structure of layers around an arbitrary network node. We find, both analytically and empirically, that the distance distribution of all nodes from a specific network node consists of two regimes. The first is characterized by rapid growth, and the second decays exponentially. We also show that the nodes degree distribution at each layer is a power law with an exponential cut-off. We obtain similar results for the layers surrounding the root of multicast trees cut from such networks, as well as the Internet. All of our results were obtained both analytically and on empirical Interenet data

    Absence of kinetic effects in reaction-diffusion processes in scale-free networks

    Full text link
    We show that the chemical reactions of the model systems of A+A->0 and A+B->0 when performed on scale-free networks exhibit drastically different behavior as compared to the same reactions in normal spaces. The exponents characterizing the density evolution as a function of time are considerably higher than 1, implying that both reactions occur at a much faster rate. This is due to the fact that the discerning effects of the generation of a depletion zone (A+A) and the segregation of the reactants (A+B) do not occur at all as in normal spaces. Instead we observe the formation of clusters of A (A+A reaction) and of mixed A and B (A+B reaction) around the hubs of the network. Only at the limit of very sparse networks is the usual behavior recovered.Comment: 4 pages, 4 figures, to be published in Physical Review Letter

    Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations

    Full text link
    We study the distributions of traveling length l and minimal traveling time t through two-dimensional percolation porous media characterized by long-range spatial correlations. We model the dynamics of fluid displacement by the convective movement of tracer particles driven by a pressure difference between two fixed sites (''wells'') separated by Euclidean distance r. For strongly correlated pore networks at criticality, we find that the probability distribution functions P(l) and P(t) follow the same scaling Ansatz originally proposed for the uncorrelated case, but with quite different scaling exponents. We relate these changes in dynamical behavior to the main morphological difference between correlated and uncorrelated clusters, namely, the compactness of their backbones. Our simulations reveal that the dynamical scaling exponents for correlated geometries take values intermediate between the uncorrelated and homogeneous limiting cases

    Earthquake networks based on similar activity patterns

    Full text link
    Earthquakes are a complex spatiotemporal phenomenon, the underlying mechanism for which is still not fully understood despite decades of research and analysis. We propose and develop a network approach to earthquake events. In this network, a node represents a spatial location while a link between two nodes represents similar activity patterns in the two different locations. The strength of a link is proportional to the strength of the cross-correlation in activities of two nodes joined by the link. We apply our network approach to a Japanese earthquake catalog spanning the 14-year period 1985-1998. We find strong links representing large correlations between patterns in locations separated by more than 1000 km, corroborating prior observations that earthquake interactions have no characteristic length scale. We find network characteristics not attributable to chance alone, including a large number of network links, high node assortativity, and strong stability over time.Comment: 8 pages text, 9 figures. Updated from previous versio

    Diffusion with critically correlated traps and the slow relaxation of the longest wavelength mode

    Full text link
    We study diffusion on a substrate with permanent traps distributed with critical positional correlation, modeled by their placement on the perimeters of a critical percolation cluster. We perform a numerical analysis of the vibrational density of states and the largest eigenvalue of the equivalent scalar elasticity problem using the method of Arnoldi and Saad. We show that the critical trap correlation increases the exponent appearing in the stretched exponential behavior of the low frequency density of states by approximately a factor of two as compared to the case of no correlations. A finite size scaling hypothesis of the largest eigenvalue is proposed and its relation to the density of states is given. The numerical analysis of this scaling postulate leads to the estimation of the stretch exponent in good agreement with the density of states result.Comment: 15 pages, LaTeX (RevTeX

    Diffusion and spectral dimension on Eden tree

    Full text link
    We calculate the eigenspectrum of random walks on the Eden tree in two and three dimensions. From this, we calculate the spectral dimension dsd_s and the walk dimension dwd_w and test the scaling relation ds=2df/dwd_s = 2d_f/d_w (=2d/dw=2d/d_w for an Eden tree). Finite-size induced crossovers are observed, whereby the system crosses over from a short-time regime where this relation is violated (particularly in two dimensions) to a long-time regime where the behavior appears to be complicated and dependent on dimension even qualitatively.Comment: 11 pages, Plain TeX with J-Phys.sty style, HLRZ 93/9

    Synchronization interfaces and overlapping communities in complex networks

    Full text link
    We show that a complex network of phase oscillators may display interfaces between domains (clusters) of synchronized oscillations. The emergence and dynamics of these interfaces are studied in the general framework of interacting phase oscillators composed of either dynamical domains (influenced by different forcing processes), or structural domains (modular networks). The obtained results allow to give a functional definition of overlapping structures in modular networks, and suggest a practical method to identify them. As a result, our algorithm could detect information on both single overlapping nodes and overlapping clusters.Comment: 5 pages, 4 figure

    A renormalisation approach to excitable reaction-diffusion waves in fractal media

    Get PDF
    Of fundamental importance to wave propagation in a wide range of physical phenomena is the structural geometry of the supporting medium. Recently, there have been several investigations on wave propagation in fractal media. We present here a renormalization approach to the study of reaction-diffusion (RD) wave propagation on finitely ramified fractal structures. In particular we will study a Rinzel-Keller (RK) type model, supporting travelling waves on a Sierpinski gasket (SG), lattice

    Diffusion and Trapping on a one-dimensional lattice

    Full text link
    The properties of a particle diffusing on a one-dimensional lattice where at each site a random barrier and a random trap act simultaneously on the particle are investigated by numerical and analytical techniques. The combined effect of disorder and traps yields a decreasing survival probability with broad distribution (log-normal). Exact enumerations, effective-medium approximation and spectral analysis are employed. This one-dimensional model shows rather rich behaviours which were previously believed to exist only in higher dimensionality. The possibility of a trapping-dominated super universal class is suggested.Comment: 20 pages, Revtex 3.0, 13 figures in compressed format using uufiles command, to appear in Phys. Rev. E, for an hard copy or problems e-mail to: [email protected]

    Inter-similarity between coupled networks

    Full text link
    Recent studies have shown that a system composed from several randomly interdependent networks is extremely vulnerable to random failure. However, real interdependent networks are usually not randomly interdependent, rather a pair of dependent nodes are coupled according to some regularity which we coin inter-similarity. For example, we study a system composed from an interdependent world wide port network and a world wide airport network and show that well connected ports tend to couple with well connected airports. We introduce two quantities for measuring the level of inter-similarity between networks (i) Inter degree-degree correlation (IDDC) (ii) Inter-clustering coefficient (ICC). We then show both by simulation models and by analyzing the port-airport system that as the networks become more inter-similar the system becomes significantly more robust to random failure.Comment: 4 pages, 3 figure
    corecore