410 research outputs found

    Supervised learning with quantum enhanced feature spaces

    Full text link
    Machine learning and quantum computing are two technologies each with the potential for altering how computation is performed to address previously untenable problems. Kernel methods for machine learning are ubiquitous for pattern recognition, with support vector machines (SVMs) being the most well-known method for classification problems. However, there are limitations to the successful solution to such problems when the feature space becomes large, and the kernel functions become computationally expensive to estimate. A core element to computational speed-ups afforded by quantum algorithms is the exploitation of an exponentially large quantum state space through controllable entanglement and interference. Here, we propose and experimentally implement two novel methods on a superconducting processor. Both methods represent the feature space of a classification problem by a quantum state, taking advantage of the large dimensionality of quantum Hilbert space to obtain an enhanced solution. One method, the quantum variational classifier builds on [1,2] and operates through using a variational quantum circuit to classify a training set in direct analogy to conventional SVMs. In the second, a quantum kernel estimator, we estimate the kernel function and optimize the classifier directly. The two methods present a new class of tools for exploring the applications of noisy intermediate scale quantum computers [3] to machine learning.Comment: Fixed typos, added figures and discussion about quantum error mitigatio

    Qudits of composite dimension, mutually unbiased bases and projective ring geometry

    Full text link
    The d2d^2 Pauli operators attached to a composite qudit in dimension dd may be mapped to the vectors of the symplectic module Zd2\mathcal{Z}_d^{2} (Zd\mathcal{Z}_d the modular ring). As a result, perpendicular vectors correspond to commuting operators, a free cyclic submodule to a maximal commuting set, and disjoint such sets to mutually unbiased bases. For dimensions d=6, 10, 15, 12d=6,~10,~15,~12, and 18, the fine structure and the incidence between maximal commuting sets is found to reproduce the projective line over the rings Z6\mathcal{Z}_{6}, Z10\mathcal{Z}_{10}, Z15\mathcal{Z}_{15}, Z6×F4\mathcal{Z}_6 \times \mathbf{F}_4 and Z6×Z3\mathcal{Z}_6 \times \mathcal{Z}_3, respectively.Comment: 10 pages (Fast Track communication). Journal of Physics A Mathematical and Theoretical (2008) accepte

    The Clumping Transition in Niche Competition: a Robust Critical Phenomenon

    Full text link
    We show analytically and numerically that the appearance of lumps and gaps in the distribution of n competing species along a niche axis is a robust phenomenon whenever the finiteness of the niche space is taken into account. In this case depending if the niche width of the species σ\sigma is above or below a threshold σc\sigma_c, which for large n coincides with 2/n, there are two different regimes. For σ>sigmac\sigma > sigma_c the lumpy pattern emerges directly from the dominant eigenvector of the competition matrix because its corresponding eigenvalue becomes negative. For σ</sigmac\sigma </- sigma_c the lumpy pattern disappears. Furthermore, this clumping transition exhibits critical slowing down as σ\sigma is approached from above. We also find that the number of lumps of species vs. σ\sigma displays a stair-step structure. The positions of these steps are distributed according to a power-law. It is thus straightforward to predict the number of groups that can be packed along a niche axis and it coincides with field measurements for a wide range of the model parameters.Comment: 16 pages, 7 figures; http://iopscience.iop.org/1742-5468/2010/05/P0500

    The Projective Line Over the Finite Quotient Ring GF(2)[xx]/<x3x>< x^{3} - x> and Quantum Entanglement I. Theoretical Background

    Full text link
    The paper deals with the projective line over the finite factor ring R_R\_{\clubsuit} \equiv GF(2)[xx]/. The line is endowed with 18 points, spanning the neighbourhoods of three pairwise distant points. As R_R\_{\clubsuit} is not a local ring, the neighbour (or parallel) relation is not an equivalence relation so that the sets of neighbour points to two distant points overlap. There are nine neighbour points to any point of the line, forming three disjoint families under the reduction modulo either of two maximal ideals of the ring. Two of the families contain four points each and they swap their roles when switching from one ideal to the other; the points of the one family merge with (the image of) the point in question, while the points of the other family go in pairs into the remaining two points of the associated ordinary projective line of order two. The single point of the remaining family is sent to the reference point under both the mappings and its existence stems from a non-trivial character of the Jacobson radical, J_{\cal J}\_{\clubsuit}, of the ring. The factor ring R~_R_/J_\widetilde{R}\_{\clubsuit} \equiv R\_{\clubsuit}/ {\cal J}\_{\clubsuit} is isomorphic to GF(2) \otimes GF(2). The projective line over R~_\widetilde{R}\_{\clubsuit} features nine points, each of them being surrounded by four neighbour and the same number of distant points, and any two distant points share two neighbours. These remarkable ring geometries are surmised to be of relevance for modelling entangled qubit states, to be discussed in detail in Part II of the paper.Comment: 8 pages, 2 figure

    Existential Contextuality and the Models of Meyer, Kent and Clifton

    Full text link
    It is shown that the models recently proposed by Meyer, Kent and Clifton (MKC) exhibit a novel kind of contextuality, which we term existential contextuality. In this phenomenon it is not simply the pre-existing value but the actual existence of an observable which is context dependent. This result confirms the point made elsewhere, that the MKC models do not, as the authors claim, ``nullify'' the Kochen-Specker theorem. It may also be of some independent interest.Comment: Revtex, 7 pages, 1 figure. Replaced with published versio

    On Invariant Notions of Segre Varieties in Binary Projective Spaces

    Full text link
    Invariant notions of a class of Segre varieties \Segrem(2) of PG(2^m - 1, 2) that are direct products of mm copies of PG(1, 2), mm being any positive integer, are established and studied. We first demonstrate that there exists a hyperbolic quadric that contains \Segrem(2) and is invariant under its projective stabiliser group \Stab{m}{2}. By embedding PG(2^m - 1, 2) into \PG(2^m - 1, 4), a basis of the latter space is constructed that is invariant under \Stab{m}{2} as well. Such a basis can be split into two subsets whose spans are either real or complex-conjugate subspaces according as mm is even or odd. In the latter case, these spans can, in addition, be viewed as indicator sets of a \Stab{m}{2}-invariant geometric spread of lines of PG(2^m - 1, 2). This spread is also related with a \Stab{m}{2}-invariant non-singular Hermitian variety. The case m=3m=3 is examined in detail to illustrate the theory. Here, the lines of the invariant spread are found to fall into four distinct orbits under \Stab{3}{2}, while the points of PG(7, 2) form five orbits.Comment: 18 pages, 1 figure; v2 - version accepted in Designs, Codes and Cryptograph

    Body odor quality predicts behavioral attractiveness in humans

    Get PDF
    Growing effort is being made to understand how different attractive physical traits co-vary within individuals, partly because this might indicate an underlying index of genetic quality. In humans, attention has focused on potential markers of quality such as facial attractiveness, axillary odor quality, the second-to-fourth digit (2D:4D) ratio and body mass index (BMI). Here we extend this approach to include visually-assessed kinesic cues (nonverbal behavior linked to movement) which are statistically independent of structural physical traits. The utility of such kinesic cues in mate assessment is controversial, particularly during everyday conversational contexts, as they could be unreliable and susceptible to deception. However, we show here that the attractiveness of nonverbal behavior, in 20 male participants, is predicted by perceived quality of their axillary body odor. This finding indicates covariation between two desirable traits in different sensory modalities. Depending on two different rating contexts (either a simple attractiveness rating or a rating for long-term partners by 10 female raters not using hormonal contraception), we also found significant relationships between perceived attractiveness of nonverbal behavior and BMI, and between axillary odor ratings and 2D:4D ratio. Axillary odor pleasantness was the single attribute that consistently predicted attractiveness of nonverbal behavior. Our results demonstrate that nonverbal kinesic cues could reliably reveal mate quality, at least in males, and could corroborate and contribute to mate assessment based on other physical traits

    Aerospace Ground Equipment\u27s Impact on Aircraft Availability and Deployment

    Get PDF
    The first purpose of this thesis was to study the effects of four factors on aircraft availability: the aerospace ground equipment (AGE) design configuration, the mean time between failure (MTBF) of AGE, the mean time to repair (MTTR) AGE, and the travel time to transport the AGE around the flightline. A simulation developed by Carrico (1996) that has its foundation based on the Logistics Composite Model (LCOM) was used. ANOVA results indicated that the present estimates of these factors are too broad for trade studies that include an estimate of aircraft availability to begin. The time it takes AGE to travel from one place to another around the flightline strongly affected aircraft availability. It is recommended that further AGE field observation and data collection be accomplished before the merits of one AGE cart technology is compared to another. The second purpose of this thesis was to collect as much information on the deployability and affordability of AGE as possible. Although much of the information collected was a few years old, the results suggest that new technologies improve the deployment footprint and the combined acquisition and deployment costs. Background information about support equipment and AGE is included in the study

    Kochen-Specker Theorem for Finite Precision Spin One Measurements

    Full text link
    Unsharp spin 1 observables arise from the fact that a residual uncertainty about the actual orientation of the measurement device remains. If the uncertainty is below a certain level, and if the distribution of measurement errors is covariant under rotations, a Kochen-Specker theorem for the unsharp spin observables follows: There are finite sets of directions such that not all the unsharp spin observables in these directions can consistently be assigned approximate truth-values in a non-contextual way.Comment: 4 page

    Bases for qudits from a nonstandard approach to SU(2)

    Full text link
    Bases of finite-dimensional Hilbert spaces (in dimension d) of relevance for quantum information and quantum computation are constructed from angular momentum theory and su(2) Lie algebraic methods. We report on a formula for deriving in one step the (1+p)p qupits (i.e., qudits with d = p a prime integer) of a complete set of 1+p mutually unbiased bases in C^p. Repeated application of the formula can be used for generating mutually unbiased bases in C^d with d = p^e (e > or = 2) a power of a prime integer. A connection between mutually unbiased bases and the unitary group SU(d) is briefly discussed in the case d = p^e.Comment: From a talk presented at the 13th International Conference on Symmetry Methods in Physics (Dubna, Russia, 6-9 July 2009) organized in memory of Prof. Yurii Fedorovich Smirnov by the Bogoliubov Laboratory of Theoretical Physics of the JINR and the ICAS at Yerevan State University
    corecore