319 research outputs found

    An NMR Investigation of the Effect of Hydrogen Bonding on the Rates of Rotation about the C-N Bonds in Urea and Thiourea

    Get PDF
    The interaction between urea and tetrabutylammonium acetate was investigated in dimethylformamide/ dimethyl sulfoxide solutions using ¹H and 15^N NMR. The chemical-shift behavior of the urea protons is consistent with a urea-acetate hydrogen-bonded complex involving both carboxylate oxygens and the urea hydrogens trans to the carbonyl oxygen with K_assoc = 120 ± 10. Line shape analysis of the temperature-dependent ¹H NMR spectra show that ∆G^‡ for rotation about the C-N bond of urea changes only slightly from 11.0 ± 0.1 to 11.2 ± 0.1 kcal/mol on 1:1 molar addition of tetrabutylammonium acetate to a dilute solution of urea. A parallel investigation of the interaction of thiourea with tetrabutylammonium acetate gave a binding constant, K_assoc = 90 ± 10. The ∆G^‡ for rotation about the C-N bond of thiourea was found to increase from 13.5 ± 0.1 to 14.0 ± 0.1 kcal/mol on 1:1 addition of tetrabutylammonium acetate to a dilute solution of thiourea in dimethylformamide/dimethyl sulfoxide. Measurements were also made of the self-association of several ureas and of ∆G^‡ for rotation about both C(O)-N bonds of 1,1-dimethylurea

    Recognition and processing of a new repertoire of DNA substrates by human 3-methyladenine DNA glycosylase (AAG)

    Get PDF
    The human 3-methyladenine DNA glycosylase (AAG) recognizes and excises a broad range of purines damaged by alkylation and oxidative damage, including 3-methyladenine, 7-methylguanine, hypoxanthine (Hx), and 1,N[superscript 6]-ethenoadenine (εA). The crystal structures of AAG bound to εA have provided insights into the structural basis for substrate recognition, base excision, and exclusion of normal purines and pyrimidines from its substrate recognition pocket. In this study, we explore the substrate specificity of full-length and truncated Δ80AAG on a library of oligonucleotides containing structurally diverse base modifications. Substrate binding and base excision kinetics of AAG with 13 damaged oligonucleotides were examined. We found that AAG bound to a wide variety of purine and pyrimidine lesions but excised only a few of them. Single-turnover excision kinetics showed that in addition to the well-known εA and Hx substrates, 1-methylguanine (m1G) was also excised efficiently by AAG. Thus, along with εA and ethanoadenine (EA), m1G is another substrate that is shared between AAG and the direct repair protein AlkB. In addition, we found that both the full-length and truncated AAG excised 1,N[superscript 2]-ethenoguanine (1,N[superscript 2]-εG), albeit weakly, from duplex DNA. Uracil was excised from both single- and double-stranded DNA, but only by full-length AAG, indicating that the N-terminus of AAG may influence glycosylase activity for some substrates. Although AAG has been primarily shown to act on double-stranded DNA, AAG excised both εA and Hx from single-stranded DNA, suggesting the possible significance of repair of these frequent lesions in single-stranded DNA transiently generated during replication and transcription.United States. National Institutes of Health (grant ES05355)United States. National Institutes of Health (grant CA75576)United States. National Institutes of Health (grant CA55042)United States. National Institutes of Health (grant ES02109)United States. National Institutes of Health (grant T32-ES007020)United States. National Institutes of Health (grant CA80024)United States. National Institutes of Health (grant CA26731

    BioMaPS: A Roadmap for Success

    Get PDF
    The manuscript outlines the impact that our National Science Foundation Interdisciplinary Training for Undergraduates in Biological and Mathematical Sciences program, BioMaPS, has had on the students and faculty at Murray State University. This interdisciplinary program teams mathematics and biology undergraduate students with mathematics and biology faculty and has produced research insights and curriculum developments at the intersection of these two disciplines. The goals, structure, achievements, and curriculum initiatives are described in relation to the effects they have had to enhance the study of biomathematics

    Engineering Pseudomonas putida for production of 3-hydroxyacids using hybrid type I polyketide synthases

    Get PDF
    Engineered type I polyketide synthases (T1PKSs) are a potentially transformative platform for the biosynthesis of small molecules. Due to their modular nature, T1PKSs can be rationally designed to produce a wide range of bulk or specialty chemicals. While heterologous PKS expression is best studied in microbes of the genus Streptomyces, recent studies have focused on the exploration of non-native PKS hosts. The biotechnological production of chemicals in fast growing and industrial relevant hosts has numerous economic and logistic advantages. With its native ability to utilize alternative feedstocks, Pseudomonas putida has emerged as a promising workhorse for the sustainable production of small molecules. Here, we outline the assessment of P. putida as a host for the expression of engineered T1PKSs and production of 3-hydroxyacids. After establishing the functional expression of an engineered T1PKS, we successfully expanded and increased the pool of available acyl-CoAs needed for the synthesis of polyketides using transposon sequencing and protein degradation tagging. This work demonstrates the potential of T1PKSs in P. putida as a production platform for the sustainable biosynthesis of unnatural polyketides

    Molars and incisors: show your microarray IDs.

    Get PDF
    BACKGROUND: One of the key questions in developmental biology is how, from a relatively small number of conserved signaling pathways, is it possible to generate organs displaying a wide range of shapes, tissue organization, and function. The dentition and its distinct specific tooth types represent a valuable system to address the issues of differential molecular signatures. To identify such signatures, we performed a comparative transcriptomic analysis of developing murine lower incisors, mandibular molars and maxillary molars at the developmental cap stage (E14.5). RESULTS: 231 genes were identified as being differentially expressed between mandibular incisors and molars, with a fold change higher than 2 and a false discovery rate lower than 0.1, whereas only 96 genes were discovered as being differentially expressed between mandibular and maxillary molars. Numerous genes belonging to specific signaling pathways (the Hedgehog, Notch, Wnt, FGF, TGFβ/BMP, and retinoic acid pathways), and/or to the homeobox gene superfamily, were also uncovered when a less stringent fold change threshold was used. Differential expressions for 10 out of 12 (mandibular incisors versus molars) and 9 out of 10 selected genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of incisor versus molar differentially expressed genes revealed that 143 genes belonged to 9 networks with intermolecular connections. Networks with the highest significance scores were centered on the TNF/NFκB complex and the ERK1/2 kinases. Two networks ERK1/2 kinases and tretinoin were involved in differential molar morphogenesis. CONCLUSION: These data allowed us to build several regulatory networks that may distinguish incisor versus molar identity, and may be useful for further investigations of these tooth-specific ontogenetic programs. These programs may be dysregulated in transgenic animal models and related human diseases leading to dental anomalies.journal articleresearch support, non-u.s. gov't2013 Mar 262013 03 26importe

    Strong physical constraints on sequence-specific target location by proteins on DNA molecules

    Get PDF
    Sequence-specific binding to DNA in the presence of competing non-sequence-specific ligands is a problem faced by proteins in all organisms. It is akin to the problem of parking a truck at a loading bay by the side of a road in the presence of cars parked at random along the road. Cars even partially covering the loading bay prevent correct parking of the truck. Similarly on DNA, non-specific ligands interfere with the binding and function of sequence-specific proteins. We derive a formula for the probability that the loading bay is free from parked cars. The probability depends on the size of the loading bay and allows an estimation of the size of the footprint on the DNA of the sequence-specific protein by assaying protein binding or function in the presence of increasing concentrations of non-specific ligand. Assaying for function gives an ‘activity footprint’; the minimum length of DNA required for function rather than the more commonly measured physical footprint. Assaying the complex type I restriction enzyme, EcoKI, gives an activity footprint of ∼66 bp for ATP hydrolysis and 300 bp for the DNA cleavage function which is intimately linked with translocation of DNA by EcoKI. Furthermore, considering the coverage of chromosomal DNA by proteins in vivo, our theory shows that the search for a specific DNA sequence is very difficult; most sites are obscured by parked cars. This effectively rules out any significant role in target location for mechanisms invoking one-dimensional, linear diffusion along DNA

    Enamel and dental anomalies in latent-transforming growth factor beta-binding protein 3 mutant mice.

    Get PDF
    Latent-transforming growth factor beta-binding protein 3 (LTBP-3) is important for craniofacial morphogenesis and hard tissue mineralization, as it is essential for activation of transforming growth factor-β (TGF-β). To investigate the role of LTBP-3 in tooth formation we performed micro-computed tomography (micro-CT), histology, and scanning electron microscopy analyses of adult Ltbp3-/- mice. The Ltbp3-/- mutants presented with unique craniofacial malformations and reductions in enamel formation that began at the matrix formation stage. Organization of maturation-stage ameloblasts was severely disrupted. The lateral side of the incisor was affected most. Reduced enamel mineralization, modification of the enamel prism pattern, and enamel nodules were observed throughout the incisors, as revealed by scanning electron microscopy. Molar roots had internal irregular bulbous-like formations. The cementum thickness was reduced, and microscopic dentinal tubules showed minor nanostructural changes. Thus, LTBP-3 is required for ameloblast differentiation and for the formation of decussating enamel prisms, to prevent enamel nodule formation, and for proper root morphogenesis. Also, and consistent with the role of TGF-β signaling during mineralization, almost all craniofacial bone components were affected in Ltbp3-/- mice, especially those involving the upper jaw and snout. This mouse model demonstrates phenotypic overlap with Verloes Bourguignon syndrome, also caused by mutation of LTBP3, which is hallmarked by craniofacial anomalies and amelogenesis imperfecta phenotypes.journal article2017 Febimporte
    corecore