1,300 research outputs found
The Christmas Island Seamount Province, Indian Ocean: Origin of Intraplate Volcanism by Shallow Recycling of Continental Lithosphere?
The east-west-trending Christmas Island Seamount
Province (CHRISP, 1800x600 km) in the northeastern Indian
Ocean is elongated orthogonal to present-day plate motion,
posing the question if a mantle plume formed this volcanic
belt. Here we report the first age (Ar/Ar) and geochemical (Sr-
Nd-Hf-Pb DS isotopic data) from the CHRISP seamount
chain. A crude E-W age decrease from the Argo Basin (136
Ma), to the Eastern Wharton Basin (115-94 Ma) to the
Vening-Meinesz seamounts (96-64 Ma) to the Cocos-Keeling
seamounts (56-47 Ma) suggests spatial migration of melting.
Christmas Island, however, yields much younger ages (44-4
Ma), inconsistent with an age progression. The isotopic
compositions (e.g. 206Pb/204Pb = 17.3-19.3; 207Pb/204Pb = 15.49-
15.67; 143Nd/144Nd = 0.51220-0.51295; 176Hf/177Hf = 0.28246-
0.28319) range from enriched MORB (or “C”) to very
enriched mantle (EM1) type compositions more typical of
continental than oceanic volcanism. Lamproitic and
kimberlitic rocks from western Australia, India and other
continental areas, derived from metasomatized subcontinental
lithospheric mantle, could serve as the EM1 type endmembers.
The morphology, ages and chemical composition of the
CHRISP, combined with plate tectonic reconstructions, cannot
be easily explained within the framework of the mantle plume
hypotheses. We therefore propose that the seamounts are
derived through the recycling of continental lithosphere
(mantle ± lower crust) delaminated during the breakup of
Gondwana and brought to the surface at the former spreading
centers separating Argoland (western Burma), Greater India
and Australia
The -cleus experiment: A gram-scale fiducial-volume cryogenic detector for the first detection of coherent neutrino-nucleus scattering
We discuss a small-scale experiment, called -cleus, for the first
detection of coherent neutrino-nucleus scattering by probing nuclear-recoil
energies down to the 10 eV-regime. The detector consists of low-threshold
CaWO and AlO calorimeter arrays with a total mass of about 10 g and
several cryogenic veto detectors operated at millikelvin temperatures.
Realizing a fiducial volume and a multi-element target, the detector enables
active discrimination of , neutron and surface backgrounds. A first
prototype AlO device, operated above ground in a setup without
shielding, has achieved an energy threshold of eV and further
improvements are in reach. A sensitivity study for the detection of coherent
neutrino scattering at nuclear power plants shows a unique discovery potential
(5) within a measuring time of weeks. Furthermore, a site
at a thermal research reactor and the use of a radioactive neutrino source are
investigated. With this technology, real-time monitoring of nuclear power
plants is feasible.Comment: 14 pages, 19 figure
Gram-scale cryogenic calorimeters for rare-event searches
The energy threshold of a cryogenic calorimeter can be lowered by reducing
its size. This is of importance since the resulting increase in signal rate
enables new approaches in rare-event searches, including the detection of MeV
mass dark matter and coherent scattering of reactor or solar neutrinos. A
scaling law for energy threshold vs. detector size is given. We analyze the
possibility of lowering the threshold of a gram-scale cryogenic calorimeter to
the few eV regime. A prototype 0.5 g AlO device achieved an energy
threshold of () eV, the lowest value reported for a macroscopic
calorimeter.Comment: 7 pages, 8 figure
The CRESST Experiment: Recent Results and Prospects
The CRESST experiment seeks hypothetical WIMP particles that could account
for the bulk of dark matter in the Universe. The detectors are cryogenic
calorimeters in which WIMPs would scatter elastically on nuclei, releasing
phonons. The first phase of the experiment has successfully deployed several
262 g sapphire devices in the Gran Sasso underground laboratories. A main
source of background has been identified as microscopic mechanical fracturing
of the crystals, and has been eliminated, improving the background rate by up
to three orders of magnitude at low energies, leaving a rate close to one count
per day per kg and per keV above 10 keV recoil energy. This background now
appears to be dominated by radioactivity, and future CRESST scintillating
calorimeters which simultaneously measure light and phonons will allow
rejection of a great part of it.Comment: To appear in the proceedings of the CAPP2000 Conference, Verbier,
Switzerland, July, 2000 (eds J. Garcia-Bellido, R. Durrer, and M.
Shaposhnikov
A Textured Silicon Calorimetric Light Detector
We apply the standard photovoltaic technique of texturing to reduce the
reflectivity of silicon cryogenic calorimetric light detectors. In the case of
photons with random incidence angles, absorption is compatible with the
increase in surface area. For the geometrically thin detectors studied, energy
resolution from athermal phonons, dominated by position dependence, is
proportional to the surface-to-volume ratio. With the CaWO4 scintillating
crystal used as light source, the time constants of the calorimeter should be
adapted to the relatively slow light-emission times.Comment: Submitted to Journal of Applied Physic
Observation of out-of-phase bilayer plasmons in YBa_2Cu_3O_7-delta
The temperature dependence of the c-axis optical conductivity \sigma(\omega)
of optimally and overdoped YBa_2Cu_3O_x (x=6.93 and 7) is reported in the far-
(FIR) and mid-infrared (MIR) range. Below T_c we observe a transfer of spectral
weight from the FIR not only to the condensate at \omega = 0, but also to a new
peak in the MIR. This peak is naturally explained as a transverse out-of-phase
bilayer plasmon by a model for \sigma(\omega) which takes the layered crystal
structure into account. With decreasing doping the plasmon shifts to lower
frequencies and can be identified with the surprising and so far not understood
FIR feature reported in underdoped bilayer cuprates.Comment: 7 pages, 3 eps figures, Revtex, epsfi
The anomaly of the oxygen bond-bending mode at 320 cm and the additional absorption peak in the c-axis infrared conductivity of underdoped YBaCuO single crystals revisited by ellipsometricmeasurements
We have performed ellipsometric measurements of the far-infrared c-axis
dielectric response of underdoped YBaCuO single
crystals. Here we report a detailed analysis of the temperature-dependent
renormalization of the oxygen bending phonon mode at 320 cm and the
formation of the additional absorption peak around 400-500 cm. For a
strongly underdoped YBaCuO crystal with T=52 K we
find that, in agreement with previous reports based on conventional reflection
measurements, the gradual onset of both features occurs well above T at
T*150 K. Contrary to some of these reports, however, our data establish
that the phonon anomaly and the formation of the additional peak exhibit very
pronounced and steep changes right at T. For a less underdoped
YBaCuO crystal with T=80 K, the onset temperature of
the phonon anomaly almost coincides with T. Also in contrast to some
previous reports, we find for both crystals that a sizeable fraction of the
spectral weight of the additional absorption peak cannot be accounted for by
the spectral-weight loss of the phonon modes but instead arises from a
redistribution of the electronic continuum. Our ellipsometric data are
consistent with a model where the bilayer cuprate compounds are treated as a
superlattice of intra- and inter-bilayer Josephson-junctions
Results from 730 kg days of the CRESST-II Dark Matter Search
The CRESST-II cryogenic Dark Matter search, aiming at detection of WIMPs via
elastic scattering off nuclei in CaWO crystals, completed 730 kg days of
data taking in 2011. We present the data collected with eight detector modules,
each with a two-channel readout; one for a phonon signal and the other for
coincidently produced scintillation light. The former provides a precise
measure of the energy deposited by an interaction, and the ratio of
scintillation light to deposited energy can be used to discriminate different
types of interacting particles and thus to distinguish possible signal events
from the dominant backgrounds. Sixty-seven events are found in the acceptance
region where a WIMP signal in the form of low energy nuclear recoils would be
expected. We estimate background contributions to this observation from four
sources: 1) "leakage" from the e/\gamma-band 2) "leakage" from the
\alpha-particle band 3) neutrons and 4) Pb-206 recoils from Po-210 decay. Using
a maximum likelihood analysis, we find, at a high statistical significance,
that these sources alone are not sufficient to explain the data. The addition
of a signal due to scattering of relatively light WIMPs could account for this
discrepancy, and we determine the associated WIMP parameters.Comment: 17 pages, 13 figure
- …
