1,355 research outputs found
An Efficient Local Search for Partial Latin Square Extension Problem
A partial Latin square (PLS) is a partial assignment of n symbols to an nxn
grid such that, in each row and in each column, each symbol appears at most
once. The partial Latin square extension problem is an NP-hard problem that
asks for a largest extension of a given PLS. In this paper we propose an
efficient local search for this problem. We focus on the local search such that
the neighborhood is defined by (p,q)-swap, i.e., removing exactly p symbols and
then assigning symbols to at most q empty cells. For p in {1,2,3}, our
neighborhood search algorithm finds an improved solution or concludes that no
such solution exists in O(n^{p+1}) time. We also propose a novel swap
operation, Trellis-swap, which is a generalization of (1,q)-swap and
(2,q)-swap. Our Trellis-neighborhood search algorithm takes O(n^{3.5}) time to
do the same thing. Using these neighborhood search algorithms, we design a
prototype iterated local search algorithm and show its effectiveness in
comparison with state-of-the-art optimization solvers such as IBM ILOG CPLEX
and LocalSolver.Comment: 17 pages, 2 figure
Functional studies of signaling pathways in peri-implantation development of the mouse embryo by RNAi
BACKGROUND: Studies of gene function in the mouse have relied mainly on gene targeting via homologous recombination. However, this approach is difficult to apply in specific windows of time, and to simultaneously knock-down multiple genes. Here we report an efficient method for dsRNA-mediated gene silencing in late cleavage-stage mouse embryos that permits examination of phenotypes at post-implantation stages. RESULTS: We show that introduction of Bmp4 dsRNA into intact blastocysts by electroporation recapitulates the genetic Bmp4 null phenotype at gastrulation. It also reveals a novel role for Bmp4 in the regulation the anterior visceral endoderm specific gene expression and its positioning. We also show that RNAi can be used to simultaneously target several genes. When applied to the three murine isoforms of Dishevelled, it leads to earlier defects than previously observed in double knock-outs. These include severe delays in post-implantation development and defects in the anterior midline and neural folds at headfold stages. CONCLUSION: Our results indicate that the BMP4 signalling pathway contributes to the development of the anterior visceral endoderm, and reveal an early functional redundancy between the products of the murine Dishevelled genes. The proposed approach constitutes a powerful tool to screen the functions of genes that govern the development of the mouse embryo
Disruption of the temporally regulated cloaca endodermal B-catenin signaling causes anorectal malformations
published_or_final_versio
In Vivo Biotransformation of 3,3′,4,4′-Tetrachlorobiphenyl by Whole Plants−Poplars and Switchgrass
Polychlorinated biphenyls (PCBs) are widely distributed persistent organic pollutants. In vitro research has shown that plant cell cultures might transform lower chlorinated congeners to hydroxylated PCBs, but there are few studies on in vivo metabolism of PCBs by intact whole plants. In this research, poplar plants (Populus deltoides × nigra, DN34) and switchgrass (Panicum vigratum, Alamo) were hydroponically exposed to 3,3′,4,4′-tetrachlorobiphenyl (CB77). Metabolism in plants occurred rapidly, and metabolites were detected after only a 24 h exposure. Rearrangement of chlorine atoms and dechlorination of CB77 by plants was unexpectedly observed. In addition, poplars were able to hydroxylate CB77 and the metabolite 6-hydroxy-3,3′,4,4′-tetrachlorobiphenyl (6-OH-CB77) was identified and quantified. Hybrid poplar was able to hydroxylate CB77, but switchgrass was not, suggesting that enzymatic transformations are plant specific. Sulfur-containing metabolites (from the action of sulfotransferases) were investigated in this study, but they were not detected in either poplar or switchgrass
Polyethylene Based Ionomers as High Voltage Insulation Materials
Polyethylene based ionomers are demonstrated to feature a thermo-mechanical and dielectric property portfolio that is comparable to cross-linked polyethylene (XLPE), which may enable the design of more sustainable high voltage direct-current (HVDC) power cables, a crucial component of future electricity grids that seamlessly integrate renewable sources of energy. A new type of ionomer is obtained via high-pressure/high-temperature free radical copolymerization of ethylene in the presence of small amounts of ion-pair comonomers comprising amine terminated methacrylates and methacrylic acid. The synthesized ionomers feature a crystallinity, melting temperature, rubber plateau modulus and thermal conductivity like XLPE but remain melt-processable. Moreover, the preparation of the ionomers is free of byproducts, which readily yields a highly insulating material with a low dielectric loss tangent and a low direct-current (DC) electrical conductivity of 1 to 6\ub710−14\ua0S\ua0m−1 at 70\ua0\ub0C and an electric field of 30\ua0kV\ua0mm−1. Evidently, the investigated ionomers represent a promising alternative to XLPE-based high voltage insulation, which may permit to ease the production as well as end-of-use recycling of HVDC power cables by combining the advantages of thermoset and thermoplastic materials while avoiding the formation of byproducts
Constraints on the Timing of Explosive Volcanism at Aso and Aira Calderas (Japan) Between 50 and 30 ka: New Insights From the Lake Suigetsu Sedimentary Record (SG14 Core)
Volcanoes in the East Asian/Pacific region have been the source of some of the largest magnitude eruptions during the Quaternary, and accurately evaluating their eruptive histories is essential for hazard assessments. To overcome difficulties in resolving and precisely dating eruptions in the near‐source realm, the high‐resolution (varved) sediments of Lake Suigetsu (central Honshu, Japan) were examined for the presence of non‐visible (cryptotephra) layers from 50 ka up until the 30 ka AT caldera‐forming event of Aira volcano. Cryptotephra layers are four times more frequently preserved than visible markers in the Suigetsu sediments, meaning that this archive provides a unique and unprecedented record of eruptions that were dispersed towards the densely populated regions of central Honshu. Major and trace element volcanic glass chemistry is used to fingerprint the ash layers and pinpoint their volcanic origin. Tephras are found throughout the investigated sediments, but the highest abundance of ash fall events are recorded between 39 and 30 ka, capturing a period of intense volcanism at calderas on Kyushu Island (Japan). The augmented Suigetsu tephrostratigraphy records at least seven eruption events from Aso caldera (southern Kyushu) that post‐date the widespread ACP‐4 Plinian eruption (ca. 50 ka), and four explosive events from Aira (central Kyushu) that occurred leading up to the catastrophic caldera‐forming AT eruption (ca. 30 ka)
Success of a suicidal defense strategy against infection in a structured habitat
Pathogen infection often leads to the expression of virulence and host death when the host-pathogen symbiosis seems more beneficial for the pathogen. Previously proposed explanations have focused on the pathogen's side. In this work, we tested a hypothesis focused on the host strategy. If a member of a host population dies immediately upon infection aborting pathogen reproduction, it can protect the host population from secondary infections. We tested this "Suicidal Defense Against Infection" (SDAI) hypothesis by developing an experimental infection system that involves a huge number of bacteria as hosts and their virus as pathogen, which is linked to modeling and simulation. Our experiments and simulations demonstrate that a population with SDAI strategy is successful in the presence of spatial structure but fails in its absence. The infection results in emergence of pathogen mutants not inducing the host suicide in addition to host mutants resistant to the pathogen
Characterization of Side Populations in HNSCC: Highly Invasive, Chemoresistant and Abnormal Wnt Signaling
Side Population (SP) cells, a subset of Hoechst-low cells, are enriched with stem cells. Originally, SP cells were isolated from bone marrow but recently have been found in various solid tumors and cancer cell lines that are clonogenic in vitro and tumorigenic in vivo. In this study, SP cells from lymph node metastatic head and neck squamous cell carcinoma (HNSCC) cell lines were examined using flow cytometry and Hoechst 3342 efflux assay. We found that highly metastatic HNSCC cell lines M3a2 and M4e contained more SP cells compared to the low metastatic parental HNSCC cell line 686LN. SP cells in HNSCC were highly invasive in vitro and tumorigenic in vivo compared to non-SP cells. Furthermore, SP cells highly expressed ABCG2 and were chemoresistant to Bortezomib and etoposide. Importantly, we found that SP cells in HNSCC had abnormal activation of Wnt/β-catenin signaling as compared to non-SP cells. Together, these findings indicate that SP cells might be a major driving force of head and neck tumor formation and metastasis. The Wnt/β-catenin signaling pathway may be an important target for eliminating cancer stem cells in HNSCC
- …