379 research outputs found

    Toy Model for Pion Production II: The role of three-particle singularities

    Get PDF
    The influence of three-particle breakup singularities on s-wave meson production in nucleon-nucleon collisions is studied within the distorted wave Born approximation. This study is based on a simple scalar model for the two-nucleon interaction and the production mechanism. An algorithm for the exact numerical treatment of the inherent three-body cuts, together with its straightforward implementation is presented. It is also shown that two often-used approximations to avoid the calculation of the three-body breakup are not justified. The possible impact on pion production observables is discussed.Comment: 14 pages, 6 figure

    Plasmon-graviton conversion in a magnetic field in TeV-scale gravity

    Full text link
    Kaluza-Klein (KK) gravitons emission rates due to plasmon-graviton conversion in magnetic field are computed within the ADD model of TeV-scale gravity. Plasma is described in the kinetic approach as the system of charged particles and Maxwell field both confined on the brane. Interaction with multidimensional gravity living in the bulk with nn compact extra dimensions is introduced within the linearized theory. Plasma collective effects enter through the two-point correlation function of the fluctuations of the energy-momentum tensor. The estimate for magnetic stars is presented leading to the lower limit of the D-dimensional Plank mass.Comment: Submitted to Proceedings of "RusGrav-14" International Conference, 27.06-02.07 2011, Ulyanovks, Russi

    Photocouplings at the Pole from Pion Photoproduction

    Full text link
    The reactions γpπ0p\gamma p\to\pi^0 p and γpπ+n\gamma p\to\pi^+ n are analyzed in a semi-phenomenological approach up to E2.3E\sim2.3 GeV. Fits to differential cross section and single and double polarization observables are performed. A good overall reproduction of the available photoproduction data is achieved. The J\"ulich2012 dynamical coupled-channel model -which describes elastic πN\pi N scattering and the world data base of the reactions πNηN\pi N\to\eta N, KΛK\Lambda, and KΣK\Sigma at the same time - is employed as the hadronic interaction in the final state. The framework guarantees analyticity and, thus, allows for a reliable extraction of resonance parameters in terms of poles and residues. In particular, the photocouplings at the pole can be extracted and are presented.Comment: 37 pages, 31 figures. Angles of the photocouplings at the pole adapted to the convention of Phys. Rev. C 87, 068201 (2013

    Coupled-channel dynamics in the reactions piN --> piN, etaN, KLambda, KSigma

    Full text link
    Elastic piN scattering and the world data of the family of reactions pi^- p --> eta n, K^0 Lambda$, K^0 Sigma^0, K^+ Sigma^-, and pi^+ p --> K^+ Sigma^+ are described simultaneously in an analytic, unitary, coupled-channel approach. SU(3) flavor symmetry is used to relate both the t- and the u- channel exchanges that drive the meson-baryon interaction in the different channels. Angular distributions, polarizations, and spin-rotation parameters are compared with available experimental data. Partial-wave amplitudes are determined and the resonance content is extracted from the analytic continuation, including resonance positions and branching ratios, and possible sources of uncertainties are discussed. The results provide the final-state interactions for the ongoing analysis of photo- and electroproduction data.Comment: 53 pages, 48 figures; results updated to published versio

    Black hole evaporation with separated fermions

    Get PDF
    In models with a low quantum gravity scale, a well-motivated reason to expect quark and lepton fields are localized but physically separated is to avoid proton decay. This could happen in a ``fat-brane'' or in an additional, orthogonal 1/TeV sized dimension in which the gauge and Higgs fields live throughout. Black holes with masses of order the quantum gravity scale are therefore expected to evaporate non-universally, preferentially radiating directly into quarks or leptons but not both. Should black holes be copiously produced at a future hadron collider, we find the ratio of final state jets to charged leptons to photons is 113:8:1, which differs from previous analyses that assumed all standard model fields live at the same point in the extra dimensional space.Comment: 5 pages, REVTe

    Spin correlations in pppnπ+\vec{p}\vec{p}\to pn\pi^{+} pion production near threshold

    Full text link
    A first measurement of longitudinal as well as transverse spin correlation coefficients for the reaction pppnπ+\vec{p}\vec{p}\to pn\pi^+ was made using a polarized proton target and a polarized proton beam. We report kinematically complete measurements for this reaction at 325, 350, 375 and 400 MeV beam energy. The spin correlation coefficients Axx+Ayy,AxxAyy,Azz,Axz,A_{xx}+A_{yy}, A_{xx}-A_{yy}, A_{zz}, A_{xz}, and the analyzing power Ay,A_{y}, as well as angular distributions for σ(θπ)\sigma(\theta_{\pi}) and the polarization observables Aij(θπ)A_{ij}(\theta_{\pi}) were extracted. Partial wave cross sections for dominant transition channels were obtained from a partial wave analysis that included the transitions with final state angular momenta of l1l\leq 1. The measurements of the pppnπ+{\vec{p}\vec{p}\to pn\pi^{+}} polarization observables are compared with the predictions from the J\"ulich meson exchange model. The agreement is very good at 325 MeV, but it deteriorates increasingly for the higher energies. At all energies agreement with the model is better than for the reaction ppppπ0{\vec{p}\vec{p}\to pp\pi^{0}}.Comment: Preprint, 21 pp, submitted to Phys. Rev. C. Keywords: Mesons, Polarization, Spin Correlations, Few body system

    Light meson mass dependence of the positive parity heavy-strange mesons

    Get PDF
    We calculate the masses of the resonances D_{s0}^*(2317) and D_{s1}(2460) as well as their bottom partners as bound states of a kaon and a D^*- and B^*-meson, respectively, in unitarized chiral perturbation theory at next-to-leading order. After fixing the parameters in the D_{s0}^*(2317) channel, the calculated mass for the D_{s1}(2460) is found in excellent agreement with experiment. The masses for the analogous states with a bottom quark are predicted to be M_{B^*_{s0}}=(5696\pm 40) MeV and M_{B_{s1}}=(5742\pm 40) MeV in reasonable agreement with previous analyses. In particular, we predict M_{B_{s1}}-M_{B_{s0}^*}=46\pm 1 MeV. We also explore the dependence of the states on the pion and kaon masses. We argue that the kaon mass dependence of a kaonic bound state should be almost linear with slope about unity. Such a dependence is specific to the assumed molecular nature of the states. We suggest to extract the kaon mass dependence of these states from lattice QCD calculations.Comment: 10 page

    A diquark model for baryons containing one heavy quark

    Full text link
    We present a phenomenological ansatz for coupling a heavy quark with two light quarks to form a heavy baryon. The heavy quark is treated in the heavy mass limit, and the light quark dynamics is approximated by propagating scalar and axial vector 'diquarks'. The resulting effective lagrangian, which incorporates heavy quark and chiral symmetry, describes interactions of heavy baryons with Goldstone bosons in the low energy region. As an application, the Isgur--Wise form factors are estimated.Comment: 9 pages + 8 figures, both as uuencoded PS, discussion of Bjorken limit (1 par + 1 fig) added, to appear in Z.Phys.

    Stringent neutron-star limits on large extra dimensions

    Get PDF
    Supernovae (SNe) are copious sources for Kaluza-Klein gravitons which are generic for theories with large extra dimensions. These massive particles are produced with average velocities ~0.5 c so that many of them are gravitationally retained by the SN core. Every neutron star thus has a halo of KK gravitons which decay into nu bar-nu, e^+e^- and gamma gamma on time scales \~10^9 years. The EGRET gamma-flux limits (E_gamma ~ 100 MeV) for nearby neutron stars constrain the fundamental scale for n=2 extra dimensions to M >500 TeV, and M>30 TeV for n=3. The upcoming GLAST satellite is a factor ~30 more sensitive and thus may detect KK decays, for example at the nearby neutron star RX J185635--3754. The requirement that neutron stars are not excessively heated by KK decays implies M>1700 TeV for n=2, and M>60 TeV for n=3.Comment: Minor changes, matches version to appear in PR

    Near threshold eta meson production in the d+d->alpha+eta reaction

    Full text link
    The d+d->alpha+eta reaction has been investigated near threshold using the ANKE facility at COSY-Juelich. Both total and differential cross sections have been measured at two excess energies, Q=2.6 MeV and 7.7 MeV, with a subthreshold measurement being undertaken at Q=-2.6 MeV to study the physical background. While consistent with isotropy at the lower energy, the angular distribution reveals a pronounced anisotropy at the higher one, indicating the presence of higher partial waves. Options for the decomposition into partial amplitudes and their consequences for determination of the s-wave eta-alpha scattering length are discussed.Comment: 8pp, fig.3 added, normalisation in eq.4.1 correcte
    corecore