1,553 research outputs found
Angular Distribution Of Decay Electrons From The 6P Resonance Excitations In Xenon
Angular distributions for the electrons produced by the decay of the 4d--\u3e6p excitations in xenon have been measured using an undulator radiation source. The resolution employed in the experiment has allowed us to derive separate beta values for features which had not been isolated previously, as well as to determine beta values for previously unreported lines. Comparison is made between existing experimental and theoretical results
Mine Tailings Deposition Practices, Liquefaction Potential and Stability Implications
Typical mine tailings characteristics resulting from different deposition practices are discussed. The potential for liquefaction of the tailings during seismic events is presented. A discussion of how the tailings deposition method can affect the liquefaction potential is included. Tailings dam construction techniques are reviewed and evaluated with respect to the tailings deposition method and liquefaction potential. A case history is presented to illustrate how the tailings dam construction method must be coordinated with the method of tailings deposition
The Properties of X-ray Cold Fronts in a Statistical Sample of Simulated Galaxy Clusters
We examine the incidence of cold fronts in a large sample of galaxy clusters
extracted from a (512h^-1 Mpc) hydrodynamic/N-body cosmological simulation with
adiabatic gas physics computed with the Enzo adaptive mesh refinement code.
This simulation contains a sample of roughly 4000 galaxy clusters with M >
10^14 M_sun at z=0. For each simulated galaxy cluster, we have created mock
0.3-8.0 keV X-ray observations and spectroscopic-like temperature maps. We have
searched these maps with a new automated algorithm to identify the presence of
cold fronts in projection. Using a threshold of a minimum of 10 cold front
pixels in our images, corresponding to a total comoving length L_cf > 156h^-1
kpc, we find that roughly 10-12% of all projections in a mass-limited sample
would be classified as cold front clusters. Interestingly, the fraction of
clusters with extended cold front features in our synthetic maps of a
mass-limited sample trends only weakly with redshift out to z=1.0. However,
when using different selection functions, including a simulated flux limit, the
trending with redshift changes significantly. The likelihood of finding cold
fronts in the simulated clusters in our sample is a strong function of cluster
mass. In clusters with M>7.5x10^14 M_sun the cold front fraction is 40-50%. We
also show that the presence of cold fronts is strongly correlated with
disturbed morphology as measured by quantitative structure measures. Finally,
we find that the incidence of cold fronts in the simulated cluster images is
strongly dependent on baryonic physics.Comment: 16 pages, 21 figures, Accepted to Ap
Age-specific mortality during the 1918 influenza pandemic: unravelling the mystery of high young adult mortality.
The worldwide spread of a novel influenza A (H1N1) virus in 2009 showed that influenza remains a significant health threat, even for individuals in the prime of life. This paper focuses on the unusually high young adult mortality observed during the Spanish flu pandemic of 1918. Using historical records from Canada and the U.S., we report a peak of mortality at the exact age of 28 during the pandemic and argue that this increased mortality resulted from an early life exposure to influenza during the previous Russian flu pandemic of 1889-90. We posit that in specific instances, development of immunological memory to an influenza virus strain in early life may lead to a dysregulated immune response to antigenically novel strains encountered in later life, thereby increasing the risk of death. Exposure during critical periods of development could also create holes in the T cell repertoire and impair fetal maturation in general, thereby increasing mortality from infectious diseases later in life. Knowledge of the age-pattern of susceptibility to mortality from influenza could improve crisis management during future influenza pandemics
The Santa Fe Light Cone Simulation Project: II. The Prospects for Direct Detection of the WHIM with SZE Surveys
Detection of the Warm-Hot Intergalactic Medium (WHIM) using Sunyaev-Zeldovich
effect (SZE) surveys is an intriguing possibility, and one that may allow
observers to quantify the amount of "missing baryons" in the WHIM phase. We
estimate the necessary sensitivity for detecting low density WHIM gas with the
South Pole Telescope (SPT) and Planck Surveyor for a synthetic 100 square
degree sky survey. This survey is generated from a very large, high dynamic
range adaptive mesh refinement cosmological simulation performed with the Enzo
code. We find that for a modest increase in the SPT survey sensitivity (a
factor of 2-4), the WHIM gas makes a detectable contribution to the integrated
sky signal. For a Planck-like satellite, similar detections are possible with a
more significant increase in sensitivity (a factor of 8-10). We point out that
for the WHIM gas, the kinematic SZE signal can sometimes dominate the thermal
SZE where the thermal SZE decrement is maximal (150 GHz), and that using the
combination of the two increases the chance of WHIM detection using SZE
surveys. However, we find no evidence of unique features in the thermal SZE
angular power spectrum that may aid in its detection. Interestingly, there are
differences in the power spectrum of the kinematic SZE, which may not allow us
to detect the WHIM directly, but could be an important contaminant in
cosmological analyses of the kSZE-derived velocity field. Corrections derived
from numerical simulations may be necessary to account for this contamination.Comment: 9 pages, submitted to Astrophysical Journa
Pandemic Paradox: Early Life H2N2 Pandemic Influenza Infection Enhanced Susceptibility to Death during the 2009 H1N1 Pandemic.
Recent outbreaks of H5, H7, and H9 influenza A viruses in humans have served as a vivid reminder of the potentially devastating effects that a novel pandemic could exert on the modern world. Those who have survived infections with influenza viruses in the past have been protected from subsequent antigenically similar pandemics through adaptive immunity. For example, during the 2009 H1N1 "swine flu" pandemic, those exposed to H1N1 viruses that circulated between 1918 and the 1940s were at a decreased risk for mortality as a result of their previous immunity. It is also generally thought that past exposures to antigenically dissimilar strains of influenza virus may also be beneficial due to cross-reactive cellular immunity. However, cohorts born during prior heterosubtypic pandemics have previously experienced elevated risk of death relative to surrounding cohorts of the same population. Indeed, individuals born during the 1890 H3Nx pandemic experienced the highest levels of excess mortality during the 1918 "Spanish flu." Applying Serfling models to monthly mortality and influenza circulation data between October 1997 and July 2014 in the United States and Mexico, we show corresponding peaks in excess mortality during the 2009 H1N1 "swine flu" pandemic and during the resurgent 2013-2014 H1N1 outbreak for those born at the time of the 1957 H2N2 "Asian flu" pandemic. We suggest that the phenomenon observed in 1918 is not unique and points to exposure to pandemic influenza early in life as a risk factor for mortality during subsequent heterosubtypic pandemics.IMPORTANCE The relatively low mortality experienced by older individuals during the 2009 H1N1 influenza virus pandemic has been well documented. However, reported situations in which previous influenza virus exposures have enhanced susceptibility are rare and poorly understood. One such instance occurred in 1918-when those born during the heterosubtypic 1890 H3Nx influenza virus pandemic experienced the highest levels of excess mortality. Here, we demonstrate that this phenomenon was not unique to the 1918 H1N1 pandemic but that it also occurred during the contemporary 2009 H1N1 pandemic and 2013-2014 H1N1-dominated season for those born during the heterosubtypic 1957 H2N2 "Asian flu" pandemic. These data highlight the heretofore underappreciated phenomenon that, in certain instances, prior exposure to pandemic influenza virus strains can enhance susceptibility during subsequent pandemics. These results have important implications for pandemic risk assessment and should inform laboratory studies aimed at uncovering the mechanism responsible for this effect
Non-Gaussian Scatter in Cluster Scaling Relations
We investigate the impact of non-Gaussian scatter in the cluster
mass-observable scaling relation on the mass and redshift distribution of
clusters detected by wide area surveys. We parameterize non-Gaussian scatter by
incorporating the third and forth moments (skewness and kurtosis) into the
distribution P(Mobs|M). We demonstrate that for low scatter mass proxies the
higher order moments do not significantly affect the observed cluster mass and
redshift distributions. However, for high scatter mass indicators it is
necessary for the survey limiting mass threshold to be less than 10^14 h^-1
Msol to prevent the skewness from having a significant impact on the observed
number counts, particularly at high redshift. We also show that an unknown
level of non-Gaussianity in the scatter is equivalent to an additional
uncertainty on the variance in P(Mobs|M) and thus may limit the constraints
that can be placed on the dark energy equation of state parameter w.
Furthermore, positive skewness flattens the mass function at the high mass end,
and so one must also account for skewness in P(Mobs|M) when using the shape of
the mass function to constrain cluster scaling-relations.Comment: 6 Pages, 3 Figures, to be submitted to ApJ Letter
- …