1,320 research outputs found
On the Einstein-Vlasov system with hyperbolic symmetry
It is shown that a spacetime with collisionless matter evolving from data on
a compact Cauchy surface with hyperbolic symmetry can be globally covered by
compact hypersurfaces on which the mean curvature is constant and by compact
hypersurfaces on which the area radius is constant. Results for the related
cases of spherical and plane symmetry are reviewed and extended. The prospects
of using the global time coordinates obtained in this way to investigate the
global geometry of the spacetimes concerned are discussed.Comment: 23 pages LaTeX2
Antisymmetric PT-photonic structures with balanced positive and negative index materials
We propose a new class of synthetic optical materials in which the refractive
index satisfies n(-\bx)=-n^*(\bx). We term such systems antisymmetric
parity-time (APT) structures. Unlike PT-symmetric systems which require
balanced gain and loss, i.e. n(-\bx)=n^*(\bx), APT systems consist of
balanced positive and negative index materials. Despite the seemingly
PT-symmetric optical potential V(\bx)\equiv n(\bx)^2\omega^2/c^2, APT systems
are not invariant under combined PT operations due to the discontinuity of the
spatial derivative of the wavefunction. We show that APT systems can display
intriguing properties such as spontaneous phase transition of the scattering
matrix, bidirectional invisibility, and a continuous lasing spectrum.Comment: 5 pages, 4 figure
Solutions for certain classes of Riccati differential equation
We derive some analytic closed-form solutions for a class of Riccati equation
y'(x)-\lambda_0(x)y(x)\pm y^2(x)=\pm s_0(x), where \lambda_0(x), s_0(x) are
C^{\infty}-functions. We show that if \delta_n=\lambda_n
s_{n-1}-\lambda_{n-1}s_n=0, where \lambda_{n}=
\lambda_{n-1}^\prime+s_{n-1}+\lambda_0\lambda_{n-1} and
s_{n}=s_{n-1}^\prime+s_0\lambda_{k-1}, n=1,2,..., then The Riccati equation has
a solution given by y(x)=\mp s_{n-1}(x)/\lambda_{n-1}(x). Extension to the
generalized Riccati equation y'(x)+P(x)y(x)+Q(x)y^2(x)=R(x) is also
investigated.Comment: 10 page
Spectral Theory for Non-linear Superconducting Microwave Systems: Extracting Relaxation Rates and Mode Hybridization
The accurate modeling of mode hybridization and calculation of radiative
relaxation rates have been crucial to the design and optimization of
superconducting quantum devices. In this work, we introduce a spectral theory
for the electrohydrodynamics of superconductors that enables the extraction of
the relaxation rates of excitations in a general three-dimensional distribution
of superconducting bodies. Our approach addresses the long-standing problem of
formulating a modal description of open systems that is both efficient and
allows for second quantization of the radiative hybridized fields. This is
achieved through the implementation of finite but transparent boundaries
through which radiation can propagate into and out of the computational domain.
The resulting spectral problem is defined within a coarse-grained formulation
of the electrohydrodynamical equations that is suitable for the analysis of the
non-equilibrium dynamics of multiscale superconducting quantum systems.Comment: 21 pages, 12 figures, journal pape
Energies and wave functions for a soft-core Coulomb potential
For the family of model soft Coulomb potentials represented by V(r) =
-\frac{Z}{(r^q+\beta^q)^{\frac{1}{q}}}, with the parameters
Z>0, \beta>0, q \ge 1, it is shown analytically that the potentials and
eigenvalues, E_{\nu\ell}, are monotonic in each parameter. The potential
envelope method is applied to obtain approximate analytic estimates in terms of
the known exact spectra for pure power potentials. For the case q =1, the
Asymptotic Iteration Method is used to find exact analytic results for the
eigenvalues E_{\nu\ell} and corresponding wave functions, expressed in terms of
Z and \beta. A proof is presented establishing the general concavity of the
scaled electron density near the nucleus resulting from the truncated
potentials for all q. Based on an analysis of extensive numerical calculations,
it is conjectured that the crossing between the pair of states
[(\nu,\ell),(\nu',\ell')], is given by the condition \nu'\geq (\nu+1) and \ell'
\geq (\ell+3). The significance of these results for the interaction of an
intense laser field with an atom is pointed out. Differences in the observed
level-crossing effects between the soft potentials and the hydrogen atom
confined inside an impenetrable sphere are discussed.Comment: 13 pages, 5 figures, title change, minor revision
Modes of Random Lasers
In conventional lasers, the optical cavity that confines the photons also
determines essential characteristics of the lasing modes such as wavelength,
emission pattern, ... In random lasers, which do not have mirrors or a
well-defined cavity, light is confined within the gain medium by means of
multiple scattering. The sharp peaks in the emission spectra of semiconductor
powders, first observed in 1999, has therefore lead to an intense debate about
the nature of the lasing modes in these so-called lasers with resonant
feedback. In this paper, we review numerical and theoretical studies aimed at
clarifying the nature of the lasing modes in disordered scattering systems with
gain. We will discuss in particular the link between random laser modes near
threshold (TLM) and the resonances or quasi-bound (QB) states of the passive
system without gain. For random lasers in the localized regime, QB states and
threshold lasing modes were found to be nearly identical within the scattering
medium. These studies were later extended to the case of more lossy systems
such as random systems in the diffusive regime where differences between
quasi-bound states and lasing modes were measured. Very recently, a theory able
to treat lasers with arbitrarily complex and open cavities such as random
lasers established that the TLM are better described in terms of the so-called
constant-flux states.Comment: Review paper submitted to Advances in Optics and Photonic
On the rotational dynamics of magnetically threaded disks around neutron stars
We investigate the rotational dynamics of disk accretion around a strongly magnetized neutron star with an aligned dipole field. The magnetospheric field is assumed to thread the disk plasma both inside and outside the corotation radius. As a result of disk-star interaction, the magnetic torque on the disk affects the structure of accretion flow to yield the observed spin- up or spin- down rates for a source of given fastness, magnetic field strength, and mass accretion rate. Within the model we obtain a prescription for the dynamical viscosity of such magnetically modified solutions for a Keplerian disk. We then use this prescription to find a model solution for the rotation rate profile throughout the entire disk, including the non-Keplerian inner disk. We find that the non-Keplerian angular velocity transition region is not necessarily narrow for a source of given spin state. The boundary layer approximation, as in the standard magnetically threaded disk model, holds only in the case of dynamical viscosity decreasing all the way to the innermost edge of the disk. These results are applied to several observed disk-fed X-ray pulsars that have exhibited quasi-periodic oscillations (QPOs). The QPO frequencies provide a constraint on the fastness parameter and enable one to determine uniquely the width of the angular velocity transition zone for each source within model assumptions. We discuss the implications of these results on the value of the critical fastness parameter for a magnetized star in spin equilibrium. Applications of our model are also made with relevant parameters from recent numerical simulations of quasi-stationary disk - magnetized star interactions
Accounting for construction contracts : a case study on Gama Corporation
Ankara : Faculty of Management and Graduate School of Business Administration, Bilkent Univ., 1995.Thesis (Master's) -- Bilkent University, 1995.Includes bibliographical refences.This study focuses on the Accounting for Construction Contracts
in Turkey, by giving examples from GAMA Corporation.
The major characters involved in contracts and types of
contracts are discussed in the study. Main methods for the accounting
of construction contracts are examined. The most favorable contract
method for Turkey is selected.Egel, D HakanM.S
- …