11,787 research outputs found
The quantitative measure and statistical distribution of fame
Fame and celebrity play an ever-increasing role in our culture. However,
despite the cultural and economic importance of fame and its gradations, there
exists no consensus method for quantifying the fame of an individual, or of
comparing that of two individuals. We argue that, even if fame is difficult to
measure with precision, one may develop useful metrics for fame that correlate
well with intuition and that remain reasonably stable over time. Using datasets
of recently deceased individuals who were highly renowned, we have evaluated
several internet-based methods for quantifying fame. We find that some
widely-used internet-derived metrics, such as search engine results, correlate
poorly with human subject judgments of fame. However other metrics exist that
agree well with human judgments and appear to offer workable, easily accessible
measures of fame. Using such a metric we perform a preliminary investigation of
the statistical distribution of fame, which has some of the power law character
seen in other natural and social phenomena such as landslides and market
crashes. In order to demonstrate how such findings can generate quantitative
insight into celebrity culture, we assess some folk ideas regarding the
frequency distribution and apparent clustering of celebrity deaths.Comment: 17 pages, 6 figure
Stochastic model of optical variability of BL Lacertae
We use optical photometric and polarimetric data of BL Lacertae that cover a
period of 22 years to study the variability of the source. The long-term
observations are employed for establishing parameters of a stochastic model
consisting of the radiation from a steady polarized source and a number of
variable components with different polarization parameters, proposed by
Hagen-Thorn et al. earlier. We infer parameters of the model from the
observations using numerical simulations based on a Monte Carlo method, with
values of each model parameter selected from a Gaussian distribution. We
determine the best set of model parameters by comparing model distributions to
the observational ones using the chi-square criterion. We show that the
observed photometric and polarimetric variability can be explained within a
model with a steady source of high polarization, ~40%, and with direction of
polarization parallel to the parsec scale jet, along with 10+-5 sources of
variable polarization.Comment: 4 pages, 10 figures, published by Astronomy and Astrophysics; v2:
typos correcte
Medium-mass nuclei from chiral nucleon-nucleon interactions
We compute the binding energies, radii, and densities for selected
medium-mass nuclei within coupled-cluster theory and employ the "bare" chiral
nucleon-nucleon interaction at order N3LO. We find rather well-converged
results in model spaces consisting of 15 oscillator shells, and the doubly
magic nuclei 40Ca, 48Ca, and the exotic 48Ni are underbound by about 1 MeV per
nucleon within the CCSD approximation. The binding-energy difference between
the mirror nuclei 48Ca and 48Ni is close to theoretical mass table evaluations.
Our computation of the one-body density matrices and the corresponding natural
orbitals and occupation numbers provides a first step to a microscopic
foundation of the nuclear shell model.Comment: 5 pages, 5 figure
Time-dependent coupled-cluster method for atomic nuclei
We study time-dependent coupled-cluster theory in the framework of nuclear
physics. Based on Kvaal's bi-variational formulation of this method [S. Kvaal,
arXiv:1201.5548], we explicitly demonstrate that observables that commute with
the Hamiltonian are conserved under time evolution. We explore the role of the
energy and of the similarity-transformed Hamiltonian under real and imaginary
time evolution and relate the latter to similarity renormalization group
transformations. Proof-of-principle computations of He-4 and O-16 in small
model spaces, and computations of the Lipkin model illustrate the capabilities
of the method.Comment: 10 pages, 9 pdf figure
Comment on "Ab Initio study of 40-Ca with an importance-truncated no-core shell model"
In a recent Letter [Phys. Rev. Lett. 99, 092501 (2007)], Roth and Navratil
present an importance-truncation scheme for the no-core shell model. The
authors claim that their truncation scheme leads to converged results for the
ground state of 40-Ca. We believe that this conclusion cannot be drawn from the
results presented in the Letter. Furthermore, the claimed convergence is at
variance with expectations of many-body theory. In particular, coupled-cluster
calculations indicate that a significant fraction of the correlation energy is
missing.Comment: 1 page, comment on arXiv:0705.4069 (PRL 99, 092501 (2007)
- …
