111 research outputs found

    Advanced code-division multiplexers for superconducting detector arrays

    Full text link
    Multiplexers based on the modulation of superconducting quantum interference devices are now regularly used in multi-kilopixel arrays of superconducting detectors for astrophysics, cosmology, and materials analysis. Over the next decade, much larger arrays will be needed. These larger arrays require new modulation techniques and compact multiplexer elements that fit within each pixel. We present a new in-focal-plane code-division multiplexer that provides multiplexing elements with the required scalability. This code-division multiplexer uses compact lithographic modulation elements that simultaneously multiplex both signal outputs and superconducting transition-edge sensor (TES) detector bias voltages. It eliminates the shunt resistor used to voltage bias TES detectors, greatly reduces power dissipation, allows different dc bias voltages for each TES, and makes all elements sufficiently compact to fit inside the detector pixel area. These in-focal-plane code-division multiplexers can be combined with multi-gigahertz readout based on superconducting microresonators to scale to even larger arrays.Comment: 8 pages, 3 figures, presented at the 14th International Workshop on Low Temperature Detectors, Heidelberg University, August 1-5, 2011, proceedings to be published in the Journal of Low Temperature Physic

    Resonant Steps in the Characteristics of a Josephson Junction Coupled to a Transmission Line

    Get PDF
    A novel circuit is described which functions as an electronic analog of lumped element transmission line. The circuit requires only operational amplifiers, resistors, and capacitors. This module was coupled to a Josephsonj unction simulator and current voltage characteristics of the combined system were recorded. Steps were observed at voltages determined by the appropriate line resonances. When the transmission line was terminated with loads less than the characteristic impedance, chaos was seen in the lower steps. Similar results were obtained by numerical integration of the corresponding system of differential equations

    Microscopic nonequilibrium theory of double-barrier Josephson junctions

    Get PDF
    We study nonequilibrium charge transport in a double-barrier Josephson junction, including nonstationary phenomena, using the time-dependent quasiclassical Keldysh Green's function formalism. We supplement the kinetic equations by appropriate time-dependent boundary conditions and solve the time-dependent problem in a number of regimes. From the solutions, current-voltage characteristics are derived. It is understood why the quasiparticle current can show excess current as well as deficit current and how the subgap conductance behaves as function of junction parameters. A time-dependent nonequilibrium contribution to the distribution function is found to cause a non-zero averaged supercurrent even in the presence of an applied voltage. Energy relaxation due to inelastic scattering in the interlayer has a prominent role in determining the transport properties of double-barrier junctions. Actual inelastic scattering parameters are derived from experiments. It is shown as an application of the microscopic model, how the nature of the intrinsic shunt in double-barrier junctions can be explained in terms of energy relaxation and the opening of Andreev channels.Comment: Accepted for Phys. Rev.

    Effectiveness of initiating treatment with valsartan/hydrochlorothiazide in patients with stage-1 or stage-2 hypertension

    Get PDF
    This prospective, 6-week, multicenter, double-blind study examined the benefits of initiating treatment with combination valsartan/hydrochlorothiazide (HCTZ) compared with initial valsartan monotherapy for 648 patients with stage-1 or stage-2 hypertension (age=52.6±10 years; 54% male; baseline blood pressure (BP)=161/98 mm Hg, 32% stage 1). Patients were randomized to valsartan 80 mg (V-low), valsartan 160 mg (V-high) or valsartan/HCTZ 160/12.5 mg (V/HCTZ), and electively titrated after weeks 2 and 4 to the next dosage level (maximum dose valsartan/HCTZ 160/25 mg) if BP remained >140/90 mm Hg. At end of the study, patients initiated with V/HCTZ required less titration steps compared with the initial valsartan monotherapy groups (63 vs 86% required titration by study end, respectively) and reached the target BP goal of <140/90 mm Hg in a shorter period of time (2.8 weeks) (P<0.0001) vs V-low (4.3 weeks) and V-high (3.9 weeks). Initial combination therapy was also associated with higher BP control rates and greater reductions in both systolic and diastolic BP from baseline (63%, −27.7±13/–15.1±8 mm Hg) compared with V-low (46%, −21.2±13/−11.4±8 mm Hg, P<0.0001) or V-high (51%, −24.0±13/−12.0±10 mm Hg, P<0.01). Overall and drug-related AEs were mild to moderate and were similar between V/HCTZ (53.1 and 14.1%, respectively) and the two monotherapy groups, V-low (50.5 and 13.8%) and V-high (50.7 and 11.8%). In conclusion, initiating therapy with a combination of valsartan and low-dose HCTZ results in early, improved BP efficacy with similar tolerability as compared with starting treatment with a low or higher dose of valsartan for patients with stage-1 and stage-2 hypertension
    corecore