38,758 research outputs found

    Social interactions in massively multiplayer online role-playing gamers

    Get PDF
    To date, most research into massively multiplayer online role-playing games (MMORPGs) has examined the demographics of play. This study explored the social interactions that occur both within and outside of MMORPGs. The sample consisted of 912 self-selected MMORPG players from 45 countries. MMORPGs were found to be highly socially interactive environments providing the opportunity to create strong friendships and emotional relationships. The study demonstrated that the social interactions in online gaming form a considerable element in the enjoyment of playing. The study showed MMORPGs can be extremely social games, with high percentages of gamers making life-long friends and partners. It was concluded that virtual gaming may allow players to express themselves in ways they may not feel comfortable doing in real life because of their appearance, gender, sexuality, and/or age. MMORPGs also offer a place where teamwork, encouragement, and fun can be experienced

    Physical Bias of Galaxies From Large-Scale Hydrodynamic Simulations

    Get PDF
    We analyze a new large-scale (100h1100h^{-1}Mpc) numerical hydrodynamic simulation of the popular Λ\LambdaCDM cosmological model, including in our treatment dark matter, gas and star-formation, on the basis of standard physical processes. The method, applied with a numerical resolution of <200h1<200h^{-1}kpc (which is still quite coarse for following individual galaxies, especially in dense regions), attempts to estimate where and when galaxies form. We then compare the smoothed galaxy distribution with the smoothed mass distribution to determine the "bias" defined as b(δM/M)gal/(δM/M)totalb\equiv (\delta M/M)_{gal}/(\delta M/M)_{total} on scales large compared with the code numerical resolution (on the basis of resolution tests given in the appendix of this paper). We find that (holding all variables constant except the quoted one) bias increases with decreasing scale, with increasing galactic age or metallicity and with increasing redshift of observations. At the 8h18h^{-1}Mpc fiducial comoving scale bias (for bright regions) is 1.35 at z=0z=0 reaching to 3.6 at z=3z=3, both numbers being consistent with extant observations. We also find that (1020)h1(10-20)h^{-1}Mpc voids in the distribution of luminous objects are as observed (i.e., observed voids are not an argument against CDM-like models) and finally that the younger systems should show a colder Hubble flow than do the early type galaxies (a testable proposition). Surprisingly, little evolution is found in the amplitude of the smoothed galaxy-galaxy correlation function (as a function of {\it comoving} separation). Testing this prediction vs observations will allow a comparison between this work and that of Kauffmann et al which is based on a different physical modelingmethod.Comment: in press, ApJ, 26 latex pages plus 7 fig

    Measuring the galaxy power spectrum and scale-scale correlations with multiresolution-decomposed covariance -- I. method

    Get PDF
    We present a method of measuring galaxy power spectrum based on the multiresolution analysis of the discrete wavelet transformation (DWT). Since the DWT representation has strong capability of suppressing the off-diagonal components of the covariance for selfsimilar clustering, the DWT covariance for popular models of the cold dark matter cosmogony generally is diagonal, or jj(scale)-diagonal in the scale range, in which the second scale-scale correlations are weak. In this range, the DWT covariance gives a lossless estimation of the power spectrum, which is equal to the corresponding Fourier power spectrum banded with a logarithmical scaling. In the scale range, in which the scale-scale correlation is significant, the accuracy of a power spectrum detection depends on the scale-scale or band-band correlations. This is, for a precision measurements of the power spectrum, a measurement of the scale-scale or band-band correlations is needed. We show that the DWT covariance can be employed to measuring both the band-power spectrum and second order scale-scale correlation. We also present the DWT algorithm of the binning and Poisson sampling with real observational data. We show that the alias effect appeared in usual binning schemes can exactly be eliminated by the DWT binning. Since Poisson process possesses diagonal covariance in the DWT representation, the Poisson sampling and selection effects on the power spectrum and second order scale-scale correlation detection are suppressed into minimum. Moreover, the effect of the non-Gaussian features of the Poisson sampling can be calculated in this frame.Comment: AAS Latex file, 44 pages, accepted for publication in Ap

    The Flow of a Viscous Compressible Fluid Through a Very Narrow Gap

    Get PDF
    The effect of compressibility on the pressure distribution in the narrow gap between a rotating cylinder and a plane in a viscous fluid was studied by Taylor and Saffman [1] during an investigation of the centripetal pump effect discovered by Reiner [2]

    Unusually Large Fluctuations in the Statistics of Galaxy Formation at High Redshift

    Full text link
    We show that various milestones of high-redshift galaxy formation, such as the formation of the first stars or the complete reionization of the intergalactic medium, occurred at different times in different regions of the universe. The predicted spread in redshift, caused by large-scale fluctuations in the number density of galaxies, is at least an order of magnitude larger than previous expectations that argued for a sharp end to reionization. This cosmic scatter in the abundance of galaxies introduces new features that affect the nature of reionization and the expectations for future probes of reionization, and may help explain the present properties of dwarf galaxies in different environments. The predictions can be tested by future numerical simulations and may be verified by upcoming observations. Current simulations, limited to relatively small volumes and periodic boundary conditions, largely omit cosmic scatter and its consequences. In particular, they artificially produce a sudden end to reionization, and they underestimate the number of galaxies by up to an order of magnitude at redshift 20.Comment: 8 ApJ pages, 4 figures, ApJ. Minor changes in revised version. Originally first submitted for publication on Aug. 29, 200

    Derivation of the Blackbody Radiation Spectrum from a Natural Maximum-Entropy Principle Involving Casimir Energies and Zero-Point Radiation

    Get PDF
    By numerical calculation, the Planck spectrum with zero-point radiation is shown to satisfy a natural maximum-entropy principle whereas alternative choices of spectra do not. Specifically, if we consider a set of conducting-walled boxes, each with a partition placed at a different location in the box, so that across the collection of boxes the partitions are uniformly spaced across the volume, then the Planck spectrum correspond to that spectrum of random radiation (having constant energy kT per normal mode at low frequencies and zero-point energy (1/2)hw per normal mode at high frequencies) which gives maximum uniformity across the collection of boxes for the radiation energy per box. The analysis involves Casimir energies and zero-point radiation which do not usually appear in thermodynamic analyses. For simplicity, the analysis is presented for waves in one space dimension.Comment: 11 page

    Atomistic simulations of adiabatic coherent electron transport in triple donor systems

    Get PDF
    A solid-state analogue of Stimulated Raman Adiabatic Passage can be implemented in a triple well solid-state system to coherently transport an electron across the wells with exponentially suppressed occupation in the central well at any point of time. Termed coherent tunneling adiabatic passage (CTAP), this method provides a robust way to transfer quantum information encoded in the electronic spin across a chain of quantum dots or donors. Using large scale atomistic tight-binding simulations involving over 3.5 million atoms, we verify the existence of a CTAP pathway in a realistic solid-state system: gated triple donors in silicon. Realistic gate profiles from commercial tools were combined with tight-binding methods to simulate gate control of the donor to donor tunnel barriers in the presence of cross-talk. As CTAP is an adiabatic protocol, it can be analyzed by solving the time independent problem at various stages of the pulse - justifying the use of time-independent tight-binding methods to this problem. Our results show that a three donor CTAP transfer, with inter-donor spacing of 15 nm can occur on timescales greater than 23 ps, well within experimentally accessible regimes. The method not only provides a tool to guide future CTAP experiments, but also illuminates the possibility of system engineering to enhance control and transfer times.Comment: 8 pages, 5 figure

    Electronic transport in Si:P delta-doped wires

    Full text link
    Despite the importance of Si:P delta-doped wires for modern nanoelectronics, there are currently no computational models of electron transport in these devices. In this paper we present a nonequilibrium Green's function model for electronic transport in a delta-doped wire, which is described by a tight-binding Hamiltonian matrix within a single-band effective-mass approximation. We use this transport model to calculate the current-voltage characteristics of a number of delta-doped wires, achieving good agreement with experiment. To motivate our transport model we have performed density-functional calculations for a variety of delta-doped wires, each with different donor configurations. These calculations also allow us to accurately define the electronic extent of a delta-doped wire, which we find to be at least 4.6 nm.Comment: 13 pages, 11 figure
    corecore