516 research outputs found

    Effects of leas and mecury on the blood proteome of children

    Get PDF
    Heavy metal exposure in children has been associated with a variety of physiological and neurological problems. The goal of this study was to utilize proteomics to enhance the understanding of biochemical interactions responsible for the health problems related to lead and mercury exposure at concentrations well below CDC guidelines. Blood plasma and serum samples from 34 children were depleted of their most abundant proteins using antibody-based affinity columns and analyzed using two different methods, LC-MS/MS and 2-D electrophoresis coupled with MALDI-TOF/MS and tandem mass spectrometry. Apolipoprotein E demonstrated an inverse significant association with lead concentrations (average being one microgram/deciliter) as deduced from LC-MS/MS and 2-D electrophoresis and confirmed by Western blot analysis. This coincides with prior findings that Apolipoprotein E genotype moderates neurobehavioral effects in individuals exposed to lead. Fifteen other proteins were identified by LC-MS/MS as proteins of interest exhibiting expressional differences in the presence of environmental lead and mercury. Brooks Gump is currently at Syracuse University

    Academic Performance and Behavioral Patterns

    Get PDF
    Identifying the factors that influence academic performance is an essential part of educational research. Previous studies have documented the importance of personality traits, class attendance, and social network structure. Because most of these analyses were based on a single behavioral aspect and/or small sample sizes, there is currently no quantification of the interplay of these factors. Here, we study the academic performance among a cohort of 538 undergraduate students forming a single, densely connected social network. Our work is based on data collected using smartphones, which the students used as their primary phones for two years. The availability of multi-channel data from a single population allows us to directly compare the explanatory power of individual and social characteristics. We find that the most informative indicators of performance are based on social ties and that network indicators result in better model performance than individual characteristics (including both personality and class attendance). We confirm earlier findings that class attendance is the most important predictor among individual characteristics. Finally, our results suggest the presence of strong homophily and/or peer effects among university students

    Broad-Spectrum Antiviral Therapeutics

    Get PDF
    Currently there are relatively few antiviral therapeutics, and most which do exist are highly pathogen-specific or have other disadvantages. We have developed a new broad-spectrum antiviral approach, dubbed Double-stranded RNA (dsRNA) Activated Caspase Oligomerizer (DRACO) that selectively induces apoptosis in cells containing viral dsRNA, rapidly killing infected cells without harming uninfected cells. We have created DRACOs and shown that they are nontoxic in 11 mammalian cell types and effective against 15 different viruses, including dengue flavivirus, Amapari and Tacaribe arenaviruses, Guama bunyavirus, and H1N1 influenza. We have also demonstrated that DRACOs can rescue mice challenged with H1N1 influenza. DRACOs have the potential to be effective therapeutics or prophylactics for numerous clinical and priority viruses, due to the broad-spectrum sensitivity of the dsRNA detection domain, the potent activity of the apoptosis induction domain, and the novel direct linkage between the two which viruses have never encountered.National Institute of Allergy and Infectious Diseases (U.S.) (grant AI057159)New England Regional Center of Excellence for Biodefense and Emerging Infectious DiseasesUnited States. Dept. of Defense (Director of Defense Research & Engineering)United States. Defense Threat Reduction AgencyUnited States. Defense Advanced Research Projects Agenc

    p16(INK4a) Prevents Centrosome Dysfunction and Genomic Instability in Primary Cells

    Get PDF
    Aneuploidy, frequently observed in premalignant lesions, disrupts gene dosage and contributes to neoplastic progression. Theodor Boveri hypothesized nearly 100 years ago that aneuploidy was due to an increase in centrosome number (multipolar mitoses) and the resultant abnormal segregation of chromosomes. We performed immunocytochemistry, quantitative immunofluorescence, karyotypic analysis, and time-lapse microscopy on primary human diploid epithelial cells and fibroblasts to better understand the mechanism involved in the production of supernumerary centrosomes (more than two microtubule nucleating bodies) to directly demonstrate that the presence of supernumerary centrosomes in genomically intact cells generates aneuploid daughter cells. We show that loss of p16(INK4a) generates supernumerary centrosomes through centriole pair splitting. Generation of supernumerary centrosomes in human diploid epithelial cells was shown to nucleate multipolar spindles and directly drive production of aneuploid daughter cells as a result of unequal segregation of the genomic material during mitosis. Finally, we demonstrate that p16(INK4a) cooperates with p21 through regulation of cyclin-dependent kinase activity to prevent centriole pair splitting. Cells with loss of p16(INK4a) activity have been found in vivo in histologically normal mammary tissue from a substantial fraction of healthy, disease-free women. Demonstration of centrosome dysfunction in cells due to loss of p16(INK4a) suggests that, under the appropriate conditions, these cells can become aneuploid. Gain or loss of genomic material (aneuploidy) may provide the necessary proproliferation and antiapoptotic mechanisms needed for the earliest stages of tumorigenesis

    A General RNA Motif for Cellular Transfection

    Get PDF
    We have developed a selection scheme to generate nucleic acid sequences that recognize and directly internalize into mammalian cells without the aid of conventional delivery methods. To demonstrate the generality of the technology, two independent selections with different starting pools were performed against distinct target cells. Each selection yielded a single highly functional sequence, both of which folded into a common core structure. This internalization signal can be adapted for use as a general purpose reagent for transfection into a wide variety of cell types including primary cells

    Vacationers Happier, but Most not Happier After a Holiday

    Get PDF
    The aim of this study was to obtain a greater insight into the association between vacations and happiness. We examined whether vacationers differ in happiness, compared to those not going on holiday, and if a holiday trip boosts post-trip happiness. These questions were addressed in a pre-test/post-test design study among 1,530 Dutch individuals. 974 vacationers answered questions about their happiness before and after a holiday trip. Vacationers reported a higher degree of pre-trip happiness, compared to non-vacationers, possibly because they are anticipating their holiday. Only a very relaxed holiday trip boosts vacationers’ happiness further after return. Generally, there is no difference between vacationers’ and non-vacationers’ post-trip happiness. The findings are explained in the light of set-point theory, need theory and comparison theory

    Colistin: recent data on pharmacodynamics properties and clinical efficacy in critically ill patients

    Get PDF
    Recent clinical studies performed in a large number of patients showed that colistin "forgotten" for several decades revived for the management of infections due to multidrug-resistant (MDR) Gram-negative bacteria (GNB) and had acceptable effectiveness and considerably less toxicity than that reported in older publications. Colistin is a rapidly bactericidal antimicrobial agent that possesses a significant postantibiotic effect against MDR Gram-negative pathogens, such as Pseudomonas aeruginosa, Acinetobacter baumannii, and Klebsiella pneumoniae. The optimal colistin dosing regimen against MDR GNB is still unknown in the intensive care unit (ICU) setting. A better understanding of the pharmacokinetic-pharmacodynamic relationship of colistin is urgently needed to determine the optimal dosing regimen. Although pharmacokinetic and pharmacodynamic data in ICU patients are scarce, recent evidence shows that the pharmacokinetics/pharmacodynamics of colistimethate sodium and colistin in critically ill patients differ from those previously found in other groups, such as cystic fibrosis patients. The AUC:MIC ratio has been found to be the parameter best associated with colistin efficacy. To maximize the AUC:MIC ratio, higher doses of colistimethate sodium and alterations in the dosing intervals may be warranted in the ICU setting. In addition, the development of colistin resistance has been linked to inadequate colistin dosing. This enforces the importance of colistin dose optimization in critically ill patients. Although higher colistin doses seem to be beneficial, the lack of colistin pharmacokinetic-pharmacodynamic data results in difficulty for the optimization of daily colistin dose. In conclusion, although colistin seems to be a very reliable alternative for the management of life-threatening nosocomial infections due to MDR GNB, it should be emphasized that there is a lack of guidelines regarding the ideal management of these infections and the appropriate colistin doses in critically ill patients with and without multiple organ failure

    Sequence Defined Disulfide-Linked Shuttle for Strongly Enhanced Intracellular Protein Delivery

    Get PDF
    Intracellular protein transduction technology is opening the door for a promising alternative to gene therapy. Techniques have to address all critical steps, like efficient cell uptake, endolysosomal escape, low toxicity, while maintaining full functional activity of the delivered protein. Here, we present the use of a chemically precise, structure defined three-arm cationic oligomer carrier molecule for protein delivery. This carrier of exact and low molecular weight combines good cellular uptake with efficient endosomal escape and low toxicity. The protein cargo is covalently attached by a bioreversible disulfide linkage. Murine 3T3 fibroblasts could be transduced very efficiently with cargo nlsEGFP, which was tagged with a nuclear localization signal. We could show subcellular delivery of the nlsEGFP to the nucleus, confirming cytosolic delivery and expected subsequent subcellular trafficking. Transfection efficiency was concentration-dependent in a directly linear mode and 20-fold higher in comparison with HIV-TAT-nlsEGFP containing a functional TAT transduction domain. Furthermore, β-galactosidase as a model enzyme cargo, modified with the carrier oligomer, was transduced into neuroblastoma cells in enzymatically active form
    corecore