11,860 research outputs found

    A mean-field monomer-dimer model with attractive interaction. The exact solution

    Full text link
    A mean-field monomer-dimer model which includes an attractive interaction among both monomers and dimers is introduced and its exact solution rigorously derived. The Heilmann-Lieb method for the pure hard-core interacting case is used to compute upper and lower bounds for the pressure. The bounds are shown to coincide in the thermodynamic limit for a suitable choice of the monomer density m. The consistency equation characterising m is studied in the phase space (h, J), where h tunes the monomer potential and J the attractive potential. The critical point and exponents are computed and show that the model is in the mean-field ferromagnetic universality class.Comment: 32 pages, 6 figure

    An Extended Variational Principle for the SK Spin-Glass Model

    Full text link
    The recent proof by F. Guerra that the Parisi ansatz provides a lower bound on the free energy of the SK spin-glass model could have been taken as offering some support to the validity of the purported solution. In this work we present a broader variational principle, in which the lower bound, as well as the actual value, are obtained through an optimization procedure for which ultrametic/hierarchal structures form only a subset of the variational class. The validity of Parisi's ansatz for the SK model is still in question. The new variational principle may be of help in critical review of the issue.Comment: 4 pages, Revtex

    About the ergodic regime in the analogical Hopfield neural networks. Moments of the partition function

    Full text link
    In this paper we introduce and exploit the real replica approach for a minimal generalization of the Hopfield model, by assuming the learned patterns to be distributed accordingly to a standard unit Gaussian. We consider the high storage case, when the number of patterns is linearly diverging with the number of neurons. We study the infinite volume behavior of the normalized momenta of the partition function. We find a region in the parameter space where the free energy density in the infinite volume limit is self-averaging around its annealed approximation, as well as the entropy and the internal energy density. Moreover, we evaluate the corrections to their extensive counterparts with respect to their annealed expressions. The fluctuations of properly introduced overlaps, which act as order parameters, are also discussed.Comment: 15 page

    Knowledgezoom for java: A concept-based exam study tool with a zoomable open student model

    Get PDF
    This paper presents our attempt to develop a personalized exam preparation tool for Java/OOP classes based on a fine-grained concept model of Java knowledge. Our goal was to explore two most popular student model-based approaches: open student modeling and problem sequencing. The result of our work is a Java exam preparation tool, Knowledge Zoom. The tool combines an open concept-level student model component, Knowledge Explorer and a concept-based sequencing component, Knowledge Maximizer into a single interface. This paper presents both components of Knowledge Zoom, reports results of its evaluation, and discusses lessons learned. © 2013 IEEE

    The Spectral Function for Finite Nuclei in the Local Density Approximation

    Get PDF
    The spectral function for finite nuclei is computed within the framework of the Local Density Approximation, starting from nuclear matter spectral functions obtained with a realistic nucleon-nucleon interaction. The spectral function is decomposed into a single-particle part and a ''correlated'' part; the latter is treated in the local density approximation. As an application momentum distributions, quasi-particle strengths and overlap functions for valence hole states, and the light-cone momentum distribution in finite nuclei are computed.Comment: 21 pages + 9 figures available upon request, RevTex, preprint KVI-108

    Desalination effluents and the establishment of the non-indigenous skeleton shrimp Paracaprella pusilla Mayer, 1890 in the south-eastern Mediterranean

    Get PDF
    A decade long monitoring programme has revealed a flourishing population of the non-indigenous skeleton shrimp Paracaprella pusilla in the vicinity of outfalls of desalination plants off the Mediterranean coast of Israel. The first specimens were collected in 2010, thus predating all previously published records of this species in the Mediterranean Sea. A decade-long disturbance regime related to the construction and operation of the plants may have had a critical role in driving the population growth

    Desalination effluents and the establishment of the non-indigenous skeleton shrimp Paracaprella pusilla Mayer, 1890 in the south-eastern Mediterranean

    Get PDF
    A decade long monitoring programme has revealed a flourishing population of the non-indigenous skeleton shrimp Paracaprella pusilla in the vicinity of outfalls of desalination plants off the Mediterranean coast of Israel. The first specimens were collected in 2010, thus predating all previously published records of this species in the Mediterranean Sea. A decade-long disturbance regime related to the construction and operation of the plants may have had a critical role in driving the population growth

    Emergence of switch-like behavior in a large family of simple biochemical networks

    Get PDF
    Bistability plays a central role in the gene regulatory networks (GRNs) controlling many essential biological functions, including cellular differentiation and cell cycle control. However, establishing the network topologies that can exhibit bistability remains a challenge, in part due to the exceedingly large variety of GRNs that exist for even a small number of components. We begin to address this problem by employing chemical reaction network theory in a comprehensive in silico survey to determine the capacity for bistability of more than 40,000 simple networks that can be formed by two transcription factor-coding genes and their associated proteins (assuming only the most elementary biochemical processes). We find that there exist reaction rate constants leading to bistability in ~90% of these GRN models, including several circuits that do not contain any of the TF cooperativity commonly associated with bistable systems, and the majority of which could only be identified as bistable through an original subnetwork-based analysis. A topological sorting of the two-gene family of networks based on the presence or absence of biochemical reactions reveals eleven minimal bistable networks (i.e., bistable networks that do not contain within them a smaller bistable subnetwork). The large number of previously unknown bistable network topologies suggests that the capacity for switch-like behavior in GRNs arises with relative ease and is not easily lost through network evolution. To highlight the relevance of the systematic application of CRNT to bistable network identification in real biological systems, we integrated publicly available protein-protein interaction, protein-DNA interaction, and gene expression data from Saccharomyces cerevisiae, and identified several GRNs predicted to behave in a bistable fashion.Comment: accepted to PLoS Computational Biolog

    Understanding fast macroscale fracture from microcrack post mortem patterns

    Get PDF
    Dynamic crack propagation drives catastrophic solid failures. In many amorphous brittle materials, sufficiently fast crack growth involves small-scale, high-frequency microcracking damage localized near the crack tip. The ultra-fast dynamics of microcrack nucleation, growth and coalescence is inaccessible experimentally and fast crack propagation was therefore studied only as a macroscale average. Here, we overcome this limitation in polymethylmethacrylate, the archetype of brittle amorphous materials: We reconstruct the complete spatio-temporal microcracking dynamics, with micrometer / nanosecond resolution, through post mortem analysis of the fracture surfaces. We find that all individual microcracks propagate at the same low, load-independent, velocity. Collectively, the main effect of microcracks is not to slow down fracture by increasing the energy required for crack propagation, as commonly believed, but on the contrary to boost the macroscale velocity through an acceleration factor selected on geometric grounds. Our results emphasize the key role of damage-related internal variables in the selection of macroscale fracture dynamics.Comment: 9 pages, 5 figures + supporting information (15 pages
    • …
    corecore